期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Short-Term and Continuing Stresses Differentially Interplay with Multiple Hormones to Regulate Plant Survival and Growth 被引量:4
1
作者 Cangjing Yang Jingjing Liu +3 位作者 Xinran Dong Zhenying Cai Weidong Tian Xuelu Wang 《Molecular Plant》 SCIE CAS CSCD 2014年第5期841-855,共15页
The stress phytohormone, abscisic acid (ABA), plays important roles in facilitating plants to survive and grow well under a wide range of stress conditions. Previous gene expression studies mainly focused on plant r... The stress phytohormone, abscisic acid (ABA), plays important roles in facilitating plants to survive and grow well under a wide range of stress conditions. Previous gene expression studies mainly focused on plant responses to short-term ABA treatment, but the effect of sustained ABA treatment and their difference are poorly studied. Here, we treated plants with ABA for 1 h or 9 d, and our genome-wide analysis indicated the differentially regulated genes under the two conditions were tremendously different. We analyzed other hormones' signaling changes by using their whole sets of known responsive genes as reporters and integrating feedback regulation of their biosynthesis. We found that, under short-term ABA treatment, signaling outputs of growth-promoting hormones, brassinosteroids and gibberellins, and a biotic stress-responsive hormone, jasmonic acid, were significantly inhibited, while auxin and ethylene signaling outputs were promoted. However, sustained ABA treatment repressed cytokinin and gibberellin signaling, but stimu- lated auxin signaling. Using several sets of hormone-related mutants, we found candidates in corresponding hormonal signaling pathways, including receptors or transcription regulators, are essential in responding to ABA. Our findings indicate interactions of ABA-dependent stress signals with hormones at different levels are involved in plants to survive under transient stress and to adapt to continuing stressful environments. 展开更多
关键词 abscisic acid crosstalk short-term stress continuing stress PHYTOHORMONE survival and growth.
原文传递
Stiffness Degradation of Undisturbed Saturated Soft Clay in the Yangtze Estuary Under Complex Stress Conditions 被引量:6
2
作者 栾茂田 刘功勋 +1 位作者 王忠涛 郭莹 《China Ocean Engineering》 SCIE EI 2010年第3期523-538,共16页
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ... Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined. 展开更多
关键词 undisturbed saturated soft clay complex stress condition stiffness degradation three-directional anisotropic consolidation continuous rotation of principal stress axes cyclic coupling shear test cyclic torsional shear test
下载PDF
Layerwise third-order shear deformation theory with transverse shear stress continuity for piezolaminated plates
3
作者 Yingshan GAO Shunqi ZHANG +2 位作者 Wei HU Songyun MA Bernd MARKERT 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期490-505,共16页
Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the co... Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics. 展开更多
关键词 Laminated structures Piezolaminated structures Third-order shear deformation theory Shear stress continuity Electromechanically coupled
原文传递
Stress Recovery Procedure for the Bonded Particle Model
4
作者 Ruoyu Guan Shean Bie Canpeng Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第3期356-368,共13页
In the simulation of discontinuous block systems,the discrete element method(DEM)has better computational efficiency and convergence than the finite element method(FEM).When several DEM particles are bonded together w... In the simulation of discontinuous block systems,the discrete element method(DEM)has better computational efficiency and convergence than the finite element method(FEM).When several DEM particles are bonded together with parallel bonds(the bonded particle model,BPM),various shapes and block fractures can be simulated.The main aim of the BPM is to simulate a continuous material in which the stress distribution is continuous.Since the existing stress result for a single particle is an average value over the particle’s area,stress results do not exist in the area between particles.In this paper,the stress value for a single two-dimensional DEM particle is deduced.A stress recovery procedure with a linear stress function for a triangular element generated by the centroids of three bonded particles is proposed.In this way,the recovered stress field for the whole mesh composed of all triangular elements is continuous.A stress gradient exists in the whole mesh.This can also provide more accurate stress values for judging a fracture inside a block.Symmetrical and asymmetrical models are simulated by the BPM and FEM.Similar to the FEM results,the recovered stress results for the BPM can describe the stress distribution in the simulated continuous blocks.For the model with the theoretical stress solution,the recovered result and the theoretical solution coincide well. 展开更多
关键词 Discrete element method Bonded particle model stress recovery procedure Continuous stress field
原文传递
Experimental Study on the Effect of Cyclic Preloading on the Resistance to Liquefaction of Saturated Loose Sand under Wave Loading
5
作者 张振东 栾茂田 +2 位作者 金丹 郭莹 聂影 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第4期398-403,共6页
By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean ... By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand. 展开更多
关键词 saturated sand LIQUEFACTION continuous rotation in the principal stress direction cyclic preloading second loading void ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部