期刊文献+
共找到749篇文章
< 1 2 38 >
每页显示 20 50 100
Geometric Accuracy and Energy Absorption Characteristics of 3D Printed Continuous Ramie Fiber Reinforced Thin-Walled Composite Structures
1
作者 Kui Wang Hao Lin +5 位作者 Antoine Le Duigou Ruijun Cai Yangyu Huang Ping Cheng Honghao Zhang Yong Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期147-158,共12页
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In additi... The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications. 展开更多
关键词 Additive manufacturing continuous fiber BIOCOMPOSITE Thin-walled structure Geometric accuracy Energy absorption
下载PDF
Mechanical properties and failure behavior of 3D printed thermoplastic composites using continuous basalt fiber under high-volume fraction
2
作者 Hang Zhang Wei-fu Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期237-250,共14页
Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response a... Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response and failure mechanism of 3D printed CBF reinforced components are still not well understood.Here,the 3D printing thermoplastic composites with high volume fraction CBF have been successfully prepared by fused deposition modelling(FDM)method.The effects of fiber printing direction and polymer matrix type on the tensile and flexural properties of the 3D printed composites have been explored,and the detailed failure morphology has been characterized using scanning electron microscopy and optical microscopy.It was found that under high fiber volume fraction,3D printed CBF reinforced polyamides(PA)composites have the best ability to maintain material integrity of the composites,followed by acrylonitrile butadiene styrene(ABS)and high impact polystyrene(HIPS).Besides,the results from rule of mixtures can accurately predict the longitudinal Young’s modulus of the 3D printed specimens,but there exists a large discrepancy for the prediction of the tensile strength.The microstructure analysis shows that the failure modes of 3D printed composites mainly include fiber debonding,fiber pull-out,stress whitening and matrix cracking. 展开更多
关键词 Additive manufacturing continuous basalt fiber Failure behavior Mechanical properties Thermoplastic composites
下载PDF
Preparation and properties of continuous Al-containing silicon carbide fibers 被引量:2
3
作者 余煜玺 李效东 +5 位作者 曹峰 王应德 邹治春 王军 郑春满 赵大方 《中国有色金属学会会刊:英文版》 CSCD 2005年第3期510-514,共5页
Continuous SiC(OAl) fibers, named KD-A fibers, were prepared by the melt-spinning of ceramic precursor polyaluminocarbosilane, air-curing, and pyrolizing at 1 300 ℃. These fibers contained small amount of aluminum an... Continuous SiC(OAl) fibers, named KD-A fibers, were prepared by the melt-spinning of ceramic precursor polyaluminocarbosilane, air-curing, and pyrolizing at 1 300 ℃. These fibers contained small amount of aluminum and 7%- 9% oxygen. The KD-A fibers were converted into sintered SiC(Al) fibers, named KD-SA, by sintering at 1 800 ℃. The fibers were characterized by chemical analysis, tensile strength test, SEM and XRD. The tensile strength, elastic modulus and diameter of the KD-A fibers are 2.6 GPa, 210 GPa, 12 - 14 μm, respectively. The KD-A fibers have higher thermal stability, more excellent oxidation resistance than the Nicalon fibers. The properties of the KD-A fibers have reached the level of Hi-Nicalon fibers. The tensile strength, elastic modulus and diameter of the KD-A fibers are 2.1 GPa, 405 GPa, 10 - 12 μm, respectively. The KD-SA fibers with nearly stoichiometric component have stable performance at high temperature, and better creep resistance than the Tyranno SA fibers. 展开更多
关键词 连续碳化硅光纤 聚铝碳硅烷 复合材料 高温分解
下载PDF
Preparation of continuous Si-Fe-C-O functional ceramic fibers 被引量:1
4
作者 陈志彦 李效东 +1 位作者 王军 李文芳 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第5期987-991,共5页
A new polymer named polyferrocarbosilane(PFCS) was prepared from polydimethylsilane and ferrocene. The spinnability of this polymer can be tailored by controlling the content of ferrocene in the polymer. The prepared ... A new polymer named polyferrocarbosilane(PFCS) was prepared from polydimethylsilane and ferrocene. The spinnability of this polymer can be tailored by controlling the content of ferrocene in the polymer. The prepared polymer was spun into a continuous polymer fiber that was subsequently cured in air and heat-treated finally in N2 up to 1 350 ℃ for conversion into Si-Fe-C-O fibers. The resulted Si-Fe-C-O fibers display low specific resistance and magnetic property due to the existence of Fe, which also reduces the specific resistance significantly to 10-2Ω·cm at room temperature when the amount of ferrocene in feed is as low as 3.0% (mass fraction). The resulted Si-Fe-C-O fibers, with C/Si molar ratio of about 1.3 and the maximum Fe content of about 2.0% (mole fraction), are composed of β-SiC and small amount of Fe3Si-like crystalline and have an average tensile strength of about 2.0 GPa. 展开更多
关键词 Si-Fe-C-O纤维 SIC纤维 二茂铁 电磁化
下载PDF
Directly electrospinning submillimeter continuous fibers on tubes to fabricate H2S detectors with fast and high response
5
作者 Xutao Ning Dou Tang Ming Zhang 《Nano Materials Science》 EI CAS CSCD 2022年第4期376-382,共7页
The fast and high response detection of neurotoxic H_(2)S is of great importance for the environment.In this paper,directly electrospinning technology on the ceramic tube is developed to improve the response of H_(2)S... The fast and high response detection of neurotoxic H_(2)S is of great importance for the environment.In this paper,directly electrospinning technology on the ceramic tube is developed to improve the response of H_(2)S detector based on superlong SnO_(2)fibers.The submillimeter continuous fibers are deposited directly on ceramic tubes by in-situ electrospinning method and can keep morphology of fibers during calcination.By employing this technology,CuO-doped SnO_(2)fiber H_(2)S detectors are fabricated,and 10%atom CuO-doped SnO_(2)H_(2)S detector shows the highest response of 40 toward 1 ppm H_(2)S at 150℃while the response is only 3.6 for the H_(2)S detector prepared in traditional route.In addition,the in-situ electrospinning H_(2)S detectors show faster response and recovery compared to the H_(2)S detectors fabricated by the conventional way.The high and fast response of H_(2)S detectors based on in-situ electrospinning can be ascribed to the continuous fiber structure and CuO modification.The present in-situ electrospinning technology may provide a new strategy for the development of other gasdetectors and bio-detectors with fast and high response. 展开更多
关键词 Submillimeter continuous fibers H2S detectors In-situ fabrication
下载PDF
An improved fiber tracking algorithm based on fiber assignment using the continuous tracking algorithm and two-tensor model 被引量:2
6
作者 Liuhong Zhu Gang Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第21期1667-1674,共8页
This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging th... This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging the type of estimation of each voxel. Thismethod should solve the cross-track problem. This study included eight healthy subjects, two axonal injury patients and seven demyelinating disease patients. This new algorithm clearly exhibited a difference in nerve fiber direction between axonal injury and demyelinating disease patients and healthy control subjects. Compared with fiber assignment with a continuous tracking algorithm, our novel method can track more and longer nerve fibers, and also can solve the fiber crossing problem. 展开更多
关键词 two-tensor model fiber assignment by continuous tracking fiber tracking axonal injury demyelinating disease diffusion tensor imaging neural regeneration
下载PDF
Interfacial Bonding Mechanism and Mechanical Performance of Continuous Fiber Reinforced Composites in Additive Manufacturing 被引量:5
7
作者 Congze Fan Zhongde Shan +2 位作者 Guisheng Zou Li Zhan Dongdong Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期131-141,共11页
The additive manufacturing of continuous fiber composites has the advantage of a high-precision and efficient forming process,which can realize the lightweight and integrated manufacturing of complex structures.Howeve... The additive manufacturing of continuous fiber composites has the advantage of a high-precision and efficient forming process,which can realize the lightweight and integrated manufacturing of complex structures.However,many void defects exist between layers in the printing process of additive manufacturing;consequently,the bonding performance between layers is poor.The bonding neck is considered a key parameter for representing the quality of interfacial bonding.In this study,the formation mechanism of the bonding neck was comprehensively analyzed.First,the influence of the nozzle and basement temperatures on the printing performance and bonding neck size was measured.Second,CT scanning was used to realize the quantitative characterization of bonding neck parameters,and the reason behind the deviation of actual measurements from theoretical calculations was analyzed.When the nozzle temperature increased from 180 to 220℃,CT measurement showed that the bonding neck diameter increased from 0.29 to 0.34 mm,and the cross-sectional porosity reduced from 5.48%to 3.22%.Finally,the fracture mechanism was studied,and the influence of the interfacial bonding quality on the destruction process of the materials was determined.In conclusion,this study can assist in optimizing the process parameters,which improves the precision of the printing parts and performance between the layers. 展开更多
关键词 3D printing Thermoplastic resin continuous fiber Additive manufacturing
下载PDF
Fiber Traction Printing:A 3D Printing Method of Continuous Fiber Reinforced Metal Matrix Composite 被引量:5
8
作者 Xin Wang Xiaoyong Tian +1 位作者 Qin Lian Dichen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期69-79,共11页
A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle t... A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys. 展开更多
关键词 3D printing Metal matrix composite CAPILLARITY continuous carbon fiber
下载PDF
Continuous Deformation Monitoring by Polymermatrix Carbon Fiber Sensitive Layer 被引量:2
9
作者 郑华升 ZHU Sirong LI Zhuoqiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期705-712,共8页
Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can cont... Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally. 展开更多
关键词 polymer-matrix carbon fiber sensitive layer strain sensitivity continuous deformation monitoring temperature compensation
下载PDF
Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles 被引量:2
10
作者 Zunyi Duan Jun Yan +2 位作者 Ikjin Lee Jingyuan Wang Tao Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1084-1094,共11页
Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design re... Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries. 展开更多
关键词 Integrated OPTIMIZATION MAXIMUM FUNDAMENTAL frequency Composite FRAME structures continuous fiber WINDING angle SEMI-ANALYTICAL sensitivity analysis
下载PDF
Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam 被引量:2
11
作者 刘海波 向天宇 赵人达 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期37-45,共9页
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre... The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design. 展开更多
关键词 High strength concrete Steel fiber reinforced concrete Prestressed concrete continuous beam
下载PDF
Surface adhesive properties of continuous PBO fiber after air-plasma-grafting-epoxy treatment 被引量:1
12
作者 贾彩霞 王乾 +1 位作者 陈平 蒲永伟 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2165-2172,共8页
It was found that air dielectric barrier discharge(DBD) plasma contributed to the grafting of epoxy resin onto continuous PBO fiber surface. This air-plasma-grafting-epoxy method yielded a noticeable enhancement in th... It was found that air dielectric barrier discharge(DBD) plasma contributed to the grafting of epoxy resin onto continuous PBO fiber surface. This air-plasma-grafting-epoxy method yielded a noticeable enhancement in the interfacial adhesion between PBO fiber and thermoplastic matrix resin, with the interlaminar shear strength of the resulting composites increased by 66.7%. DSC and FTIR analyses were then used to study the curing behavior of epoxy coating on PBO fiber surface, deduce the possible grafting reactions and investigate the grafting mechanism. More importantly, TGA measurement showed that the grafting of epoxy onto PBO fiber had almost no effect on the composite heat resistance, and there was more thermoplastic matrix resin adhering to the fiber surface; the latter could also be clearly found in the SEM photos. Thereby, the air-plasma-grafting-epoxy treatment was proved to be an effective method for the improvement of continuous PBO fiber surface adhesive properties. 展开更多
关键词 等离子体接枝 界面粘结性能 PBO纤维 纤维表面 环氧树脂 树脂处理 空气 热塑性树脂
下载PDF
Stability Analysis of Long-Span Continuous Rigid Frame Bridge with Thin-Wall Pier 被引量:1
13
作者 何波 史雅楠 +2 位作者 朱宏平 郭文增 陈勇 《Journal of Southwest Jiaotong University(English Edition)》 2008年第3期247-253,共7页
During cantilever cast in construction of high-pier and large-span continuous rigid frame bridges, structural stability in the longest cantilevered stage is very important. Based on a practical design case of a large-... During cantilever cast in construction of high-pier and large-span continuous rigid frame bridges, structural stability in the longest cantilevered stage is very important. Based on a practical design case of a large-span continuous rigid frame bridge in Wuhan, the longest span stability coefficient is calculated with linear-buckling and nonlinear-buckling methods, respectively. The influences of both geometrical nonlinearity and the dual nonlinearity of material and geometry are considered. Numerical results indicate that the nonlinear solution is necessary to stability analysis because linear buckling loads are much higher than those of nonlinear buckling. Thus, the edge fiber yield criterion is more convenient and faster than ultimate loading criterion when estimating nonlinear stability of structure, and can be used easily in the initial engineering design. 展开更多
关键词 continuous rigid frame bridge STABILITY Nonlinear buckling Edge fiber yield criterion
下载PDF
Generalized Quasi-equilibrium Problems without Open Fibers
14
作者 侯吉成 《Northeastern Mathematical Journal》 CSCD 2008年第3期207-218,共12页
In this paper, we first prove some new selection and fixed point theorems in generalized convex spaces. Then, we establish some existence theorems of quasi-equilibrium and generalized quasi-equilibrium without the con... In this paper, we first prove some new selection and fixed point theorems in generalized convex spaces. Then, we establish some existence theorems of quasi-equilibrium and generalized quasi-equilibrium without the conditions of open fibers, by applying our selection and fixed point theorems. 展开更多
关键词 QUASI-EQUILIBRIUM generalized quasi-equilibrium upper semicontinuity continuous selection fixed point open fiber
下载PDF
The decline in output of the chemical fiber industry continues to narrow
15
作者 Zhao Xinhua Zhong Mengxia 《China Textile》 2020年第6期40-41,共2页
In May,crude oil bottomed out,the cost end of chemical fiber was obviously supported.The decline in some indicators of the operation of the chemical fiber industry was narrower than that from January to April,but the ... In May,crude oil bottomed out,the cost end of chemical fiber was obviously supported.The decline in some indicators of the operation of the chemical fiber industry was narrower than that from January to April,but the terminal demand recovery was lower than expected.The global pandemic situation has not shown any signs of improvement,and the situation of chemical fiber industry is still grim. 展开更多
关键词 NARROW fiber continuE
下载PDF
Development of lutetium oxide continuous fibers with excellent mechanical properties
16
作者 Yongshuai XIE Ying PENG +5 位作者 Youmei WANG Dehua MA Yuan CHENG Luyi ZHU Jiecai HAN Xinghong ZHANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第1期24-35,共12页
The difficulty of reducing the diameter of lutetium oxide(Lu_(2)O_(3))continuous fibers below 50μm not only limits the flexibility of the sample but also seriously affects their application and development in high-en... The difficulty of reducing the diameter of lutetium oxide(Lu_(2)O_(3))continuous fibers below 50μm not only limits the flexibility of the sample but also seriously affects their application and development in high-energy lasers.In this work,a Lu-containing precursor with high ceramic yield was used as raw material,fiberized into precursor fibers by dry spinning.The pressure-assisted water vapor pretreatment(PAWVT)method was creatively proposed,and the effect of pretreatment temperature on the ceramization behavior of the precursor fibers was studied.By regulating the decomposition behavior of organic components in the precursor,the problem of fiber pulverization during heat treatment was effectively solved,and the Lu_(2)O_(3) continuous fibers with a diameter of 40μm were obtained.Compared with the current reported results,the diameter was reduced by about 50%,successfully breaking through the diameter limitation of Lu_(2)O_(3) continuous fibers.In addition,the tensile strength,elastic modulus,flexibility,and temperature resistance of Lu_(2)O_(3) continuous fibers were researched for the first time.The tensile strength and elastic modulus of Lu_(2)O_(3) continuous fibers were 373.23 MPa and 31.55 GPa,respectively.The as-obtained flexible Lu_(2)O_(3) continuous fibers with a limit radius of curvature of 3.5-4.5 mm had a temperature resistance of not lower than 1300℃,which established a solid foundation for the expansion of their application form in the field of high-energy lasers. 展开更多
关键词 lutetium oxide(Lu_(2)O_(3)) continuous fibers tensile strength FLEXIBLE temperature resistance
原文传递
Preparation and characterization of continuous high-temperature resistant Si-Al-C fibers by one-step method 被引量:4
17
作者 ZHENG ChunMan LI XiaoDong +2 位作者 WANG Hao ZHAO DaFang HU TianJiao 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第9期1425-1432,共8页
Using polymer-derived technology, continuous high-temperature resistant Si-Al-C fibers were prepared by one step method, which included melt-spinning of polya-luminocarbosilane (PACS), curing of continuous PACS fibers... Using polymer-derived technology, continuous high-temperature resistant Si-Al-C fibers were prepared by one step method, which included melt-spinning of polya-luminocarbosilane (PACS), curing of continuous PACS fibers, and sintering of the cured products. The results show that the average diameter and tensile strength of continuous Si-Al-C fibers are 11 to 12 μm and 1.8 to 2.0 GPa, respectively. The chemical formula of Si-Al-C fibers is SiC1.01O0.0400Al0.024, which is nearly stoichometric. The fibers are mainly composed of β-SiC crystalline, small amount of α-SiC, and amorphous SiC. Continuous Si-Al-C fibers exhibit excellent thermal stability. When the fibers were exposed in argon for 1 h, the tensile strength did not decrease until 1500℃. After heat treatment at 1800℃ in argon for 1 h, the fibers maintained about 80% of the initial strength. It was higher than that of Nicalon and Hi-Nicalon fibers. 展开更多
关键词 high-temperature RESISTANT continuous si-al-c fibers one STEP method polymer-derived technology
原文传递
连续SiC纤维表面铂涂层的制备及抗氧化性研究
18
作者 王现广 赵君 +5 位作者 陈力 胡昌义 张贵学 汪星强 赵兴东 魏燕 《贵金属》 CAS 北大核心 2024年第1期10-14,共5页
采用金属有机化合物化学气相沉积法(MOCVD)在连续SiC纤维表面沉积了约0.8μm厚的Pt涂层,用扫描电镜对涂层的形貌进行观察,用EDS能谱和XRD对涂层的成分进行了分析,并对沉积涂层后的纤维在不同温度和时间下的抗氧化性能进行了测试。结果表... 采用金属有机化合物化学气相沉积法(MOCVD)在连续SiC纤维表面沉积了约0.8μm厚的Pt涂层,用扫描电镜对涂层的形貌进行观察,用EDS能谱和XRD对涂层的成分进行了分析,并对沉积涂层后的纤维在不同温度和时间下的抗氧化性能进行了测试。结果表明,制备得到的铂涂层光滑致密,与纤维结合牢固,有效弥补了纤维表面缺陷;对沉积涂层后的纤维进行力学表征和抗氧化测试,发现铂涂层不仅增加了SiC纤维的抗拉强度,而且经700~1400℃氧化1h后纤维的抗氧化性能大幅提高。 展开更多
关键词 MOCVD 连续SIC纤维 铂涂层 抗氧化性
下载PDF
连续芳纶纤维增强PLA复合材料3D打印技术成型缺陷及工艺优化方法研究
19
作者 孟云聪 周光明 +1 位作者 蔡登安 张楠 《复合材料科学与工程》 CAS 北大核心 2024年第1期98-104,共7页
连续纤维3D打印技术结合了复合材料高力学性能和3D打印灵活制造的优点,具有较大发展潜力。然而现有工艺制得的零件存在较多成型缺陷,影响了该技术的大规模应用。本文基于自行研制的3D打印设备制造芳纶纤维增强PLA试验件,研究试验件成型... 连续纤维3D打印技术结合了复合材料高力学性能和3D打印灵活制造的优点,具有较大发展潜力。然而现有工艺制得的零件存在较多成型缺陷,影响了该技术的大规模应用。本文基于自行研制的3D打印设备制造芳纶纤维增强PLA试验件,研究试验件成型质量并提出了滑移缺陷发生条件,系统研究了纤维束滑移、剥离、断裂和层间孔隙等缺陷,最后提出优化打印速度、路径变化角、冷却系统和喷嘴外形四种工艺优化方法,设计了相关试验进行验证。结果表明,优化打印速度、路径变化角和增设冷却系统可将纤维束滑移距离分别降低45%、81%和50%,优化喷嘴设计可将纤维束断裂率降低90%。本研究为基于3D打印的复合材料设计和制造提供了新的思路和解决方案。 展开更多
关键词 3D打印 连续纤维 缺陷 优化方法 复合材料
下载PDF
连续法制备短切石英纤维/酚醛树脂预混料的固化反应动力学及其模压制品性能
20
作者 王齐崧 宋金梅 +2 位作者 杨帆 张薇 张翠妙 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期49-58,共10页
采用连续浸胶法,使用自制的压辊式浸胶槽制备了短切石英纤维/酚醛树脂预混料,通过红外光谱法(FT-IR)、热重分析法(TG)和差示扫描量热法(DSC)对预混料进行了表征,并研究了其固化反应动力学。结果表明,溶剂乙醇影响石英纤维的浸胶过程,连... 采用连续浸胶法,使用自制的压辊式浸胶槽制备了短切石英纤维/酚醛树脂预混料,通过红外光谱法(FT-IR)、热重分析法(TG)和差示扫描量热法(DSC)对预混料进行了表征,并研究了其固化反应动力学。结果表明,溶剂乙醇影响石英纤维的浸胶过程,连续法制备的石英纤维/酚醛树脂预混料能够降低乙醇的影响;预混料的固化工艺参数为:凝胶温度108.40℃,固化温度183.04℃,后处理温度264.47℃;固化反应级数为0.95,固化反应动力学模型为:dα/dt=Aexp(-ΔE/RT)(1-α)n=4.3×10^(12)exp(-140.74/RT)(1-α)0.95。使用模压法对所制备的预混料进行压制,得到石英纤维/酚醛树脂复合材料的模压制品,该模压制品在800℃下的质量残留率为82.3%,拉伸强度为58 MPa,断裂伸长率为0.353%,剪切强度为105 MPa,线烧蚀率为0.088 mm/s,烧蚀表面形貌未见异常,结果表明采用连续法制备的石英纤维/酚醛树脂预混料的模压制品具有较好的耐热性、烧蚀性和力学性能。 展开更多
关键词 连续法 石英纤维 酚醛树脂 预混料 固化反应动力学 性能
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部