Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its c...Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry.展开更多
A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the v...A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.展开更多
On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these meth...On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results.展开更多
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved hav...By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agree-ment with theory.展开更多
The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the...The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the condition number and sparsity are not so good. With the hybrid method, convergence can be assured only when the rank condition is satisfied. So the construction of the element is extremely limited. This paper presents the mixed hybrid penalty element method, which combines the two methods together. And it is proved theoretically that this new method is convergent, and it has the same accuracy, condition number and sparsity as the compatible element. That is to say, they are optimal to each other.Finally, a new triangle element for plate bending with nine freedom degrees is constructed with this method (three degreesof freedom are given on each corner -- one displacement and tworotations), the calculating formula of the element stiffness matrix is almost the same as that of the old triangle element for plate bending with nine degrees of freedom But it is converged to true solution with arbitrary irregrlar triangle subdivision. If the true solution u?H3 with this method the linear and quadratic rates of convergence are obtianed for three bending moments and for the displacement and two rotations respectively.展开更多
In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an al...In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method.展开更多
Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacita...Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacitance increases quasi-quadratically with the number of electrodes increasing.The quasi-quadratic dependence can be explained by a sequence of lumped capacitors connected in parallel.For a photomixer composed of 10 electrodes and 9 photoconductive gaps,the finger capacitance increases as the gap width increases at a small electrode width,and follows the reverse trend at a large electrode width.For a constant electrode width,the finger capacitance first decreases and then slightly increases as the gap broadens until the smallest finger capacitance is formed.We also investigate the finger capacitances at different electrode and gap configurations with the 8 μm × 8 μm photomixer commonly used in previous studies.These calculations lead to a better understanding of the finger capacitance affected by the finger parameters,and should lead to terahertz photomixer optimization.展开更多
This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their...This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.展开更多
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary condi...This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments.展开更多
A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple form...A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple formulation.The main goal of this paper is to improve the above discontinuous Galerkinfinite element method so that it can handle nonhomogeneous Dirichlet boundary conditions effectively.In addition,the method has been generalized in terms of approximation of the weak gradient.Error estimates of optimal order are established for the correspond-ing discontinuousfinite element approximation in both a discrete H1 norm and the L2 norm.Numerical results are presented to confirm the theory.展开更多
Based on the important boundary conditions of rolling simulation including friction, heat conduction and interactionsof the workpiece and rolls, the hot continuous rolling processes of large-diameter mandrel round bar...Based on the important boundary conditions of rolling simulation including friction, heat conduction and interactionsof the workpiece and rolls, the hot continuous rolling processes of large-diameter mandrel round bar (200 mm indiameter) in 6VH-stand hot tandem mill are successfully simulated by three-dimensional coupled thermomechanicalelastoplastic finite element method (FEM). The distributions of stress, strain, temperature and the rolling force andtorque for the two-pass and four-pass continuous rolling are calculated respectively. Thus, the two and four-passroll schedules are verified, respectively. The simulation results show that it is safe to produce 200 mm round barby the two-pass (oval pass and round pass) continuous rolling on the existing equipment compared to the four-passcontinuous rolling. There are concave surfaces and increased widths occurring at the end of rolled billet due touneven deformations between the outside and inside of the workpiece as well as the free spreading close to the rollgap of the final pass.展开更多
Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromag...Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux de- creases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained.展开更多
By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformati...By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformation and the thermal behaviors, including the mold flux film dynamical distribution, the air gap formation, as well as the shell temperature field and the growth of carbon steel solidification, in a 2120 mm × 266 mm slab continuous casting mold. The results show that the shell server deformation occurs in the off-corners in the middle and lower parts of the mold and thus causes the thick mold flux film and air gap to distribute primarily in the regions of 0–140 mm and 0–124 mm and 0–18 mm and 0–10 mm, respectively, from the corners of the wide and narrow faces of the shell under typical casting conditions. As a result, the hot spots, which result from the thick mold flux film filling the shell/mold gap, form in the regions of 20–100 mm from the corners of the wide and narrow faces of the shell and tend to expand as the shell moves downward.展开更多
A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3...A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.展开更多
A 3D viscoelastic-plastic thermal-mechanical coupled finite element model was built on the basis of the secondary development of the commercial software MSC.Marc. Numerical simulations were performed to study slab bro...A 3D viscoelastic-plastic thermal-mechanical coupled finite element model was built on the basis of the secondary development of the commercial software MSC.Marc. Numerical simulations were performed to study slab broadening in the secondary cooling zone. The effects of slab width and thickness on slab broadening were considered. The obtained results reveal that the width broadening is noticeable, and the ratio of ultimate broadening slightly increases with the increase of slab width. This agrees well with the measured data in practice. There is no obvious increase in ultimate broadening when the thickness of slabs increases.展开更多
When parametric functions are used to blend 3D surfaces, geometric continuity of displacements and derivatives until to the surface boundary must be satisfied. By the traditional blending techniques, however, arbitrar...When parametric functions are used to blend 3D surfaces, geometric continuity of displacements and derivatives until to the surface boundary must be satisfied. By the traditional blending techniques, however, arbitrariness of the solutions arises to cause a difficulty in choosing a suitable blending surface. Hence to explore new blending techniques is necessary to construct good surfaces so as to satisfy engineering requirements. In this paper, a blending surface is described as a flexibly elastic plate both in partial differential equations and in their variational equations, thus to lead to a unique solution in a sense of the minimal global surface curvature. Boundary penalty finite element methods (BP-FEMs) with and without approximate integration are proposed to handle the complicated constraints along the blending boundary. Not only have the optimal convergence rate O(h(2)) of second order generalized derivatives of the solutions in the solution domain been obtained, but also the high convergence rate O(h(4)) of the tangent boundary condition of the solutions can be achieved, where h is the maximal boundary length of rectangular elements used. Moreover, useful guidance in computation is discovered to deal with interpolation and approximation in the boundary penalty integrals. A numerical example is also provided to verify perfectly the main theoretical analysis made. This paper yields a framework of mathematical modelling, numerical techniques and error analysis to the general and complicated blending problems.展开更多
The two-level penalty mixed finite element method for the stationary Navier-Stokes equations based on Taylor-Hood element is considered in this paper. Two algorithms are proposed and analyzed. Moreover, the optimal st...The two-level penalty mixed finite element method for the stationary Navier-Stokes equations based on Taylor-Hood element is considered in this paper. Two algorithms are proposed and analyzed. Moreover, the optimal stability analysis and error estimate for these two algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms.展开更多
The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age ...The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite.展开更多
The continuous extrusion forming process for producing large section copper concave bus bar under different extrusion wheel angular velocities was studied by three-dimensional finite element technology based on softwa...The continuous extrusion forming process for producing large section copper concave bus bar under different extrusion wheel angular velocities was studied by three-dimensional finite element technology based on software DEFORM-3D. The rigid-viscoplastic constitutive equation was employed in the model. The numerical simulation results show that the deformation body flow velocity in the die orifice increases gradually with the increase of the extrusion wheel angular velocity. But slippage between the rod and extrusion wheel occurs when the extrusion wheel angular velocity is high. The effective stress near the die orifice enhances gradually with increasing extrusion wheel angular velocity. High stress is concentrated in adjacent regions of the flash gap. The effective strain gradient is greater near the abutment than that near the die orifice. The effective strain of the product increases gradually with increasing extrusion wheel angular velocity. In the deformation process, the deformation body temperature increases remarkably due to friction and deformation. So the cooling is necessary in the region of the die and tools.展开更多
Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is d...Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is developed based on .Net platform, with VB.Net, C# language and OpenGL graphic technique. With parameterized modeling method, finite element model of this kind of bridge can be built quickly and accurately, and multi-type element modeling with uniform parameters is realized. With advanced graphic technique, three-dimensional model graph can be real-timely previewed for intuitive data check. With an example of practice project, the accuracy and feasibility of this modeling method and practicality of this software are verified.展开更多
基金Project(50634030) supported by the National Natural Science Foundation of ChinaProject(20090042120005) supported by the Doctorate Foundation of the Ministry of Education of ChinaProject(2006CB605208-1) supported by the State Basic Research Program of China
文摘Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry.
基金supported by the National Natural Science Foundation of China (Nos. 10971203 and 11271340)the Research Fund for the Doctoral Program of Higher Education of China (No. 20094101110006)
文摘A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.
基金supported by NSFC(11571266,91430106,11171168,11071132)NSFC-RGC(China-Hong Kong)(11661161017)
文摘On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results.
基金Project supported by the National Natural Science Foundation of China (No.10471038)
文摘By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agree-ment with theory.
文摘The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the condition number and sparsity are not so good. With the hybrid method, convergence can be assured only when the rank condition is satisfied. So the construction of the element is extremely limited. This paper presents the mixed hybrid penalty element method, which combines the two methods together. And it is proved theoretically that this new method is convergent, and it has the same accuracy, condition number and sparsity as the compatible element. That is to say, they are optimal to each other.Finally, a new triangle element for plate bending with nine freedom degrees is constructed with this method (three degreesof freedom are given on each corner -- one displacement and tworotations), the calculating formula of the element stiffness matrix is almost the same as that of the old triangle element for plate bending with nine degrees of freedom But it is converged to true solution with arbitrary irregrlar triangle subdivision. If the true solution u?H3 with this method the linear and quadratic rates of convergence are obtianed for three bending moments and for the displacement and two rotations respectively.
文摘In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AAxxx2008A)Hundred Talent Program of the Chinese Academy of Sciences (Grant No. J08-029)the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (Grant No. YYYJ-1123-4)
文摘Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacitance increases quasi-quadratically with the number of electrodes increasing.The quasi-quadratic dependence can be explained by a sequence of lumped capacitors connected in parallel.For a photomixer composed of 10 electrodes and 9 photoconductive gaps,the finger capacitance increases as the gap width increases at a small electrode width,and follows the reverse trend at a large electrode width.For a constant electrode width,the finger capacitance first decreases and then slightly increases as the gap broadens until the smallest finger capacitance is formed.We also investigate the finger capacitances at different electrode and gap configurations with the 8 μm × 8 μm photomixer commonly used in previous studies.These calculations lead to a better understanding of the finger capacitance affected by the finger parameters,and should lead to terahertz photomixer optimization.
文摘This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.
文摘This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments.
基金supported in part by National Natural Science Foundation of China(NSFC No.11871038)supported in part by National Science Foundation Grant DMS-1620016.
文摘A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple formulation.The main goal of this paper is to improve the above discontinuous Galerkinfinite element method so that it can handle nonhomogeneous Dirichlet boundary conditions effectively.In addition,the method has been generalized in terms of approximation of the weak gradient.Error estimates of optimal order are established for the correspond-ing discontinuousfinite element approximation in both a discrete H1 norm and the L2 norm.Numerical results are presented to confirm the theory.
文摘Based on the important boundary conditions of rolling simulation including friction, heat conduction and interactionsof the workpiece and rolls, the hot continuous rolling processes of large-diameter mandrel round bar (200 mm indiameter) in 6VH-stand hot tandem mill are successfully simulated by three-dimensional coupled thermomechanicalelastoplastic finite element method (FEM). The distributions of stress, strain, temperature and the rolling force andtorque for the two-pass and four-pass continuous rolling are calculated respectively. Thus, the two and four-passroll schedules are verified, respectively. The simulation results show that it is safe to produce 200 mm round barby the two-pass (oval pass and round pass) continuous rolling on the existing equipment compared to the four-passcontinuous rolling. There are concave surfaces and increased widths occurring at the end of rolled billet due touneven deformations between the outside and inside of the workpiece as well as the free spreading close to the rollgap of the final pass.
基金Item Sponsored by National Natural Science Foundation of China (59734080)
文摘Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux de- creases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained.
基金financially supported by the National Outstanding Young Scientist Foundation of China (No. 50925415)Fundamental Research Funds for the Central Universities of China (No. N100102001)the Postdoctoral Science Foundation of China (No. 2012M510822)
文摘By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformation and the thermal behaviors, including the mold flux film dynamical distribution, the air gap formation, as well as the shell temperature field and the growth of carbon steel solidification, in a 2120 mm × 266 mm slab continuous casting mold. The results show that the shell server deformation occurs in the off-corners in the middle and lower parts of the mold and thus causes the thick mold flux film and air gap to distribute primarily in the regions of 0–140 mm and 0–124 mm and 0–18 mm and 0–10 mm, respectively, from the corners of the wide and narrow faces of the shell under typical casting conditions. As a result, the hot spots, which result from the thick mold flux film filling the shell/mold gap, form in the regions of 20–100 mm from the corners of the wide and narrow faces of the shell and tend to expand as the shell moves downward.
基金the financial supports from the National Natural Science Foundation of China (Key Program,Grant No.50634030)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0285)
文摘A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.
基金supported by the Key Projects in the National Science & Technology Pillar Program during the 11th Five-Year Plan Period of China (No.2006BAE03A04)
文摘A 3D viscoelastic-plastic thermal-mechanical coupled finite element model was built on the basis of the secondary development of the commercial software MSC.Marc. Numerical simulations were performed to study slab broadening in the secondary cooling zone. The effects of slab width and thickness on slab broadening were considered. The obtained results reveal that the width broadening is noticeable, and the ratio of ultimate broadening slightly increases with the increase of slab width. This agrees well with the measured data in practice. There is no obvious increase in ultimate broadening when the thickness of slabs increases.
文摘When parametric functions are used to blend 3D surfaces, geometric continuity of displacements and derivatives until to the surface boundary must be satisfied. By the traditional blending techniques, however, arbitrariness of the solutions arises to cause a difficulty in choosing a suitable blending surface. Hence to explore new blending techniques is necessary to construct good surfaces so as to satisfy engineering requirements. In this paper, a blending surface is described as a flexibly elastic plate both in partial differential equations and in their variational equations, thus to lead to a unique solution in a sense of the minimal global surface curvature. Boundary penalty finite element methods (BP-FEMs) with and without approximate integration are proposed to handle the complicated constraints along the blending boundary. Not only have the optimal convergence rate O(h(2)) of second order generalized derivatives of the solutions in the solution domain been obtained, but also the high convergence rate O(h(4)) of the tangent boundary condition of the solutions can be achieved, where h is the maximal boundary length of rectangular elements used. Moreover, useful guidance in computation is discovered to deal with interpolation and approximation in the boundary penalty integrals. A numerical example is also provided to verify perfectly the main theoretical analysis made. This paper yields a framework of mathematical modelling, numerical techniques and error analysis to the general and complicated blending problems.
基金This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11271298, 11271313, 61163027), the Key Project of Chinese Ministry of Education (Grant No. 212197), the Natural Science Foundation of Xinjiang Province (Grant No. 2013211B01), and the Doctoral Foundation of Xinjiang University (Grant No. BS120102).
文摘The two-level penalty mixed finite element method for the stationary Navier-Stokes equations based on Taylor-Hood element is considered in this paper. Two algorithms are proposed and analyzed. Moreover, the optimal stability analysis and error estimate for these two algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms.
基金the context of the international DECOVALEX Project (DEmonstration of COupled models and their VALidation against EXperiments)financed by Radioactive Waste Repository Authority (RAWRA),through Technical University of Liberec (TUL), Czech RepublicSKB through its sp Pillar Stability Experiment project
文摘The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite.
文摘The continuous extrusion forming process for producing large section copper concave bus bar under different extrusion wheel angular velocities was studied by three-dimensional finite element technology based on software DEFORM-3D. The rigid-viscoplastic constitutive equation was employed in the model. The numerical simulation results show that the deformation body flow velocity in the die orifice increases gradually with the increase of the extrusion wheel angular velocity. But slippage between the rod and extrusion wheel occurs when the extrusion wheel angular velocity is high. The effective stress near the die orifice enhances gradually with increasing extrusion wheel angular velocity. High stress is concentrated in adjacent regions of the flash gap. The effective strain gradient is greater near the abutment than that near the die orifice. The effective strain of the product increases gradually with increasing extrusion wheel angular velocity. In the deformation process, the deformation body temperature increases remarkably due to friction and deformation. So the cooling is necessary in the region of the die and tools.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)
文摘Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is developed based on .Net platform, with VB.Net, C# language and OpenGL graphic technique. With parameterized modeling method, finite element model of this kind of bridge can be built quickly and accurately, and multi-type element modeling with uniform parameters is realized. With advanced graphic technique, three-dimensional model graph can be real-timely previewed for intuitive data check. With an example of practice project, the accuracy and feasibility of this modeling method and practicality of this software are verified.