期刊文献+
共找到2,435篇文章
< 1 2 122 >
每页显示 20 50 100
Semi-implantable device based on multiplexed microfilament electrode cluster for continuous monitoring of physiological ions
1
作者 Shuang Huang Shantao Zheng +9 位作者 Mengyi He Chuanjie Yao Xinshuo Huang Zhengjie Liu Qiangqiang Ouyang Jing Liu Feifei Wu Hang Gao Xi Xie Hui-jiuan Chen 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期88-103,共16页
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio... Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health. 展开更多
关键词 Multiplexed microfilament electrode cluster Physiological ion sensing Subcutaneous and brain experiment Wearable platform for multi-ion detection continuous real-time monitoring system
下载PDF
Application and management of continuous glucose monitoring in diabetic kidney disease 被引量:1
2
作者 Xin-Miao Zhang Quan-Quan Shen 《World Journal of Diabetes》 SCIE 2024年第4期591-597,共7页
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou... Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation. 展开更多
关键词 Diabetic kidney disease continuous glucose monitoring Glycemic monitoring HEMODIALYSIS Peritoneal dialysis Kidney transplantation
下载PDF
Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring:Pioneering point-of-care and beyond
3
作者 Moein Safarkhani Abdullah Aldhaher +5 位作者 Golnaz Heidari Ehsan Nazarzadeh Zare Majid Ebrahimi Warkiani Omid Akhavan YunSuk Huh Navid Rabiee 《Nano Materials Science》 EI CAS CSCD 2024年第3期263-283,共21页
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio... This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable. 展开更多
关键词 Glucose sensor BIOSENSOR Wearable devices NONINVASIVE real-time monitoring
下载PDF
NCCMF:Non-Collaborative Continuous Monitoring Framework for Container-Based Cloud Runtime Status
4
作者 Tao Zheng Wenyi Tang +1 位作者 Xingshu Chen Changxiang Shen 《Computers, Materials & Continua》 SCIE EI 2024年第10期1687-1701,共15页
The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing rese... The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%. 展开更多
关键词 Container-based cloud non-collaborative continuous monitor runtime status
下载PDF
Irregular initial solidification by mold thermal monitoring in the continuous casting of steels:A review
5
作者 Qiuping Li Guanghua Wen +3 位作者 Fuhang Chen Ping Tang Zibing Hou Xinyun Mo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1003-1015,共13页
Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ... Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed. 展开更多
关键词 irregular initial solidification mold thermal monitoring continuous casting mold slag THERMOCOUPLE
下载PDF
Microarrow sensor array with enhanced skin adhesion for transdermal continuous monitoring of glucose and reactive oxygen species
6
作者 Xinshuo Huang Baoming Liang +9 位作者 Shantao Zheng Feifei Wu Mengyi He Shuang Huang Jingbo Yang Qiangqiang Ouyang Fanmao Liu Jing Liu Hui-jiuan Chen Xi Xie 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an... Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients. 展开更多
关键词 Microarrow sensor array Glucose sensing Reactive oxygen species sensing Integrated system continuous monitoring
下载PDF
Wearable Healthcare and Continuous Vital Sign Monitoring with IoT Integration
7
作者 Hamed Taherdoost 《Computers, Materials & Continua》 SCIE EI 2024年第10期79-104,共26页
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ... Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes. 展开更多
关键词 Wearable healthcare IoT integration patient care remote patient monitoring real-time data transmission health technology
下载PDF
Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3
8
作者 ZHANG Yu LI Xiangting +4 位作者 SUN Yalin XUE Aidi ZHANG Yi JIANG Hailong SHEN Weizheng 《智慧农业(中英文)》 CSCD 2024年第4期29-41,共13页
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo... [Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings. 展开更多
关键词 cow rumination behavior real-time monitoring edge computing improved MobileNet v3 edge intelligence model Bi-LSTM
下载PDF
Utilising continuous glucose monitoring for glycemic control in diabetic kidney disease
9
作者 Vamsidhar Veeranki Narayan Prasad 《World Journal of Diabetes》 SCIE 2024年第10期2006-2009,共4页
In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoi... In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoing dialysis or kidney transplantation.Conventional markers like glycated haemoglobin(HbA1c)may not accurately reflect glycemic fluctuations in these populations due to factors such as anaemia and kidney dysfunction.This comprehensive review discusses the limitations of HbA1c and explores alternative methods,such as continuous glucose monitoring(CGM)in CKD patients.CGM emerges as a promising technology offering real-time or retrospective glucose concentration measure-ments and overcoming the limitations of HbA1c.Key studies demonstrate the utility of CGM in different CKD settings,including hemodialysis and peritoneal dialysis patients,as well as kidney transplant recipients.Despite challenges like sensor accuracy fluctuation,CGM proves valuable in monitoring glycemic trends and mitigating the risk of hypo-and hyperglycemia,to which CKD patients are prone.The review also addresses the limitations of CGM in CKD patients,emphasizing the need for further research to optimize its utilization in clinical practice.Altogether,this review advocates for integrating CGM into managing glycemia in CKD patients,highlighting its superiority over traditional markers and urging clinicians to consider CGM a valuable tool in their armamentarium. 展开更多
关键词 Chronic kidney disease Diabetic kidney disease Glycemic control continuous glucose monitoring Glycated hemoglobin Glycemic variability
下载PDF
Continuous glucose monitoring metrics in pregnancy with type 1 diabetes mellitus
10
作者 Mohammad Sadiq Jeeyavudeen Mairi Crosby Joseph M Pappachan 《World Journal of Methodology》 2024年第1期6-17,共12页
Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level mon... Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level monitoring and periodic HbA1c tests,the advent of continuous glucose monitoring(CGM)systems has revolutionized the approach.These devices offer a safe and reliable means of tracking glucose levels in real-time,benefiting both women with diabetes during pregnancy and the healthcare providers.Moreover,CGM systems have shown a low rate of side effects and high feasibility when used in pregnancies complicated by diabetes,especially when paired with continuous subcutaneous insulin infusion pump as hybrid closed loop device.Such a combined approach has been demonstrated to improve overall blood sugar control,lessen the occurrence of preeclampsia and neonatal hypoglycaemia,and minimize the duration of neonatal intensive care unit stays.This paper aims to offer a comprehensive evaluation of CGM metrics specifically tailored for pregnancies impacted by type 1 diabetes mellitus. 展开更多
关键词 Type 1 diabetes mellitus continuous glucose monitoring PREGNANCY Glycaemic control continuous glucose monitoring system
下载PDF
Real-Time Monitoring of Meteorological Data at In-Situ GCW Remediation Sites
11
作者 Qinghai Wu Xiaofeng Yang +2 位作者 Jun Liu Ruiqi Wang Quanyou Fu 《Journal of Geoscience and Environment Protection》 2024年第9期152-166,共15页
To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation w... To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation wells, and to provide real-time and effective technical services and environmental data support for groundwater remediation, a real-time monitoring system design of the meteorological station supporting the portable groundwater circulation wells based on the existing equipment is proposed. A variety of environmental element information is collected and transmitted to the embedded web server by the intelligent weather transmitter, and then processed by the algorithm and stored internally, displayed locally, and published on the web. The system monitoring algorithm and user interface are designed in the CNWSCADA development environment to realize real-time processing and analysis of environmental data and monitoring, control, management, and maintenance of the system status. The PLC-controlled photovoltaic power generating panels and lithium battery packs are in line with the concept of energy saving and emission reduction, and at the same time, as an emergency power supply to guarantee the safety of equipment and data when the utility power fails to meet the requirements. The experiment proves that the system has the characteristics of remote control, real-time interaction, simple station deployment, reliable operation, convenient maintenance, and green environment protection, which is conducive to improving the comprehensive utilization efficiency of various types of environmental information and providing reliable data support, theoretical basis and guidance suggestions for the research of groundwater remediation technology and its disciplines, and the research and development of the movable groundwater cycling well monitoring system. 展开更多
关键词 Groundwater Circulation Well Weather Station real-time monitoring Embedded Web Server
下载PDF
Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data 被引量:1
12
作者 Xuyan Tan Weizhong Chen +2 位作者 Tao Zou Jianping Yang Bowen Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期886-895,共10页
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i... Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure. 展开更多
关键词 Shied tunnel Machine learning monitoring real-time prediction Data analysis
下载PDF
Preliminary prospective study of real-time post-gastrectomy glycemic fluctuations during dumping symptoms using continuous glucose monitoring
13
作者 Motonari Ri Souya Nunobe +6 位作者 Satoshi Ida Naoki Ishizuka Shinichiro Atsumi Rie Makuuchi Koshi Kumagai Manabu Ohashi Takeshi Sano 《World Journal of Gastroenterology》 SCIE CAS 2021年第23期3386-3395,共10页
BACKGROUND Although dumping symptoms constitute the most common post-gastrectomy syndromes impairing patient quality of life,the causes,including blood sugar fluctuations,are difficult to elucidate due to limitations ... BACKGROUND Although dumping symptoms constitute the most common post-gastrectomy syndromes impairing patient quality of life,the causes,including blood sugar fluctuations,are difficult to elucidate due to limitations in examining dumping symptoms as they occur.AIM To investigate relationships between glucose fluctuations and the occurrence of dumping symptoms in patients undergoing gastrectomy for gastric cancer.METHODS Patients receiving distal gastrectomy with Billroth-I(DG-BI)or Roux-en-Y reconstruction(DG-RY)and total gastrectomy with RY(TG-RY)for gastric cancer(March 2018-January 2020)were prospectively enrolled.Interstitial tissue glycemic profiles were measured every 15 min,up to 14 d,by continuous glucose monitoring.Dumping episodes were recorded on 5 patient-selected days by diary.Within 3 h postprandially,dumping-associated glycemic changes were defined as a dumping profile,those without symptoms as a control profile.These profiles were compared.RESULTS Thirty patients were enrolled(10 DG-BI,10 DG-RY,10 TG-RY).The 47 early dumping profiles of DG-BI showed immediately sharp rises after a meal,which 47 control profiles did not(P<0.05).Curves of the 15 late dumping profiles of DG-BI were similar to those of early dumping profiles,with lower glycemic levels.DGRY and TG-RY late dumping profiles(7 and 13,respectively)showed rapid glycemic decreases from a high glycemic state postprandially to hypoglycemia,with a steeper drop in TG-RY than in DG-RY.CONCLUSION Postprandial glycemic changes suggest dumping symptoms after standard gastrectomy for gastric cancer.Furthermore,glycemic profiles during dumping may differ depending on reconstruction methods after gastrectomy. 展开更多
关键词 Gastric cancer GASTRECTOMY Billroth-I reconstruction Roux-en-Y reconstruction Dumping syndrome continuous glucose monitoring
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
14
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 real-time health data monitoring Cache-Assisted real-time Detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
Fatigue Safety Assessment of Concrete Continuous Rigid Frame Bridge Based on Rain Flow Counting Method and Health Monitoring Data
15
作者 Yinghua Li Junyong He +1 位作者 Xiaoqing Zeng Yanxing Tang 《Journal of Architectural Environment & Structural Engineering Research》 2023年第3期31-40,共10页
The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming... The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration. 展开更多
关键词 Long-span continuous rigid frame bridge Rain flow counting method Fatigue performance Health monitoring system Strain monitoring data
下载PDF
Effects of Continuous Non-Invasive Blood Pressure Monitoring on Intraoperative Hemodynamics and Postoperative Myocardial Injury in Craniotomy:Comparison Between Groups Based on Self-Control and Propensity Score Matching
16
作者 Yi Tang Bingchun Xia +1 位作者 Cibo Chen Chunyan Zhao 《Proceedings of Anticancer Research》 2023年第5期53-60,共8页
Objective:To explore the effect of continuous non-invasive blood pressure monitoring on intraoperative hemodynamics and postoperative myocardial injury in craniotomy.Methods:120 cases of elective craniotomy were divid... Objective:To explore the effect of continuous non-invasive blood pressure monitoring on intraoperative hemodynamics and postoperative myocardial injury in craniotomy.Methods:120 cases of elective craniotomy were divided into the self-control group(continuous non-invasive blood pressure monitoring and intermittent cuff non-invasive blood pressure monitoring,CNAP group)and propensity score matching group(only intermittent cuff non-invasive blood pressure measurement in previous craniotomy,PSM group);Goal-directed hemodynamic management in CNAP group included heart rate(HR),blood pressure(BP),stroke volume(SV),stroke variability(SVV),and systemic vascular resistance index(SVRI).The main index is to compare the troponin level within 72 hours after operation between the CNAP group and the PSM group;The secondary indicators are the comparison of the hemodynamic conditions between the CNAP group and the PSM at 10 specific time points.Results:The incidence of postoperative myocardial injury in the CNAP group was significantly lower than that in the PSM group(12%vs.30%,P=0.01);in the CNAP group hypotensive episodes(6 vs.3,P=0.01),positive balance of fluid therapy(700 vs.500 mL,P<0.001),more use of vasoactive drugs(29 vs.18,P=0.04),more stable hemodynamics medical status(P=0.03)were recorded.Conclusion:The hemodynamic management strategy based on continuous non-invasive blood pressure monitoring can reduce the incidence of myocardial injury after elective craniotomy and maintain a more stable hemodynamic state. 展开更多
关键词 continuous non-invasive blood pressure monitoring Propensity score matching SELF-CONTROL Elective surgery CRANIOTOMY Hemodynamics state Myocardial injury
下载PDF
A Review: Biosensor Progression in Glucose Monitoring for Patients with Diabetes
17
作者 Megan Sweeney 《Advances in Bioscience and Biotechnology》 CAS 2024年第8期503-510,共8页
Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar comp... Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar complications from either if not monitored and treated accordingly. Through the Diabetes Control and Complications Trial, it was found that a significant way to monitor diabetes is through glucose levels in a person’s body. The research surrounding glucose monitoring dates to the mid-1800s, with the first successful reagent for glucose testing being developed in 1908. Since then, glucose sensing has become one of the most rapidly growing areas of research and development in biosensor technology, creating a competitive market for more advanced, accurate, and convenient glucose monitoring. This article reviews the history of biosensors used for glucose monitoring, and major advancements in biosensor technology to enhance performance and improve quality of life for patients with diabetes. 展开更多
关键词 BIOSENSOR continuous Glucose monitor SMBG Advances in Glucose monitoring DIABETES
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis
18
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
Accuracy of FreeStyle Libre flash glucose monitoring in patients with type 2 diabetes who migrated from highlands to plains
19
作者 Zeng-Mei Sun Yuan-Ze Du +11 位作者 Su-Yuan Wang Shu-Yao Sun Yan Ye Xue-Ping Sun Ming-Xia Li Hua He Wun-Chun Long Cheng-Hui Zhang Xuan-Yu Yao Wu-Yi Fan Ling Wang Yun-Hong Wu 《World Journal of Diabetes》 SCIE 2024年第6期1254-1262,共9页
BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies inve... BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies investigating its accuracy has increased.However,its accuracy has not been investigated in highland populations in China.AIM To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes(T2D)who had migrated within 3 mo from highlands to plains.METHODS Overall,68 patients with T2D,selected from those who had recently migrated from highlands to plains(within 3 mo),were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring(CGM)with the FreeStyle Libre FGM system for 14 d.Throughout the study period,fingertip capillary blood glucose was measured daily using the enzyme electrode method(Super GL,China),and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals.Moreover,the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to<5 min.The accuracy of the FGM system was evaluated according to the CGM guidelines.Subsequently,the factors influencing the mean absolute relative difference(MARD)of this system were analyzed by a multiple linear regression method.RESULTS Pearson’s correlation analysis showed that the fingertip and scanned glucose levels were positively correlated(R=0.86,P=0.00).The aggregated MARD of scanned glucose was 14.28±13.40%.Parker's error analysis showed that 99.30%of the data pairs were located in areas A and B.According to the probe wear time of the FreeStyle Libre FGM system,MARD_(1 d) and MARD_(2-14 d) were 16.55%and 14.35%,respectively(t=1.23,P=0.22).Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion(LAGE)was<5.80 mmol/L but negatively correlated with blood glucose when the LAGE was≥5.80 mmol/L.CONCLUSION The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains.This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains.MARD is mainly influenced by glucose levels and fluctuations,and the accuracy of the system is higher when the blood glucose fluctuation is small.In case of higher blood glucose level fluctuations,deviation in the scanned glucose levels is the highest at extremely low blood glucose levels. 展开更多
关键词 Type 2 diabetes Flash glucose monitoring ACCURACY continuous glucose monitor High altitude
下载PDF
Real-time Monitoring Scheme of Soil Moisture Content in Paddy Field
20
作者 贾宏伟 胡荣祥 刘威琼 《Agricultural Science & Technology》 CAS 2013年第11期1679-1682,共4页
The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme ... The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme of soil moisture content in paddy field was put forward from two key links of soil moisture content monitoring and field water-layer monitoring. This scheme could meet the alternative monitoring requirements of soil moisture content in water layer and none-water layer. It had a good maneuverability and could provide references for practical work. 展开更多
关键词 Paddy field Moisture content Soil moisture content Field water-layer real-time monitoring
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部