A new continuous bending and straightening casting curve with the aim of full using of high-temperature creep deformation was proposed. The curvature of bending and straightening segment varies as sine law with arc le...A new continuous bending and straightening casting curve with the aim of full using of high-temperature creep deformation was proposed. The curvature of bending and straightening segment varies as sine law with arc length. The basic arc segment is shortened significantly so that the length of bending and straightening area can be extended and the time of creep behavior can be increased. The distance from so lidifying front in the slab was calculated at 1200 ℃ by finite element method. The maximum strain rate of new casting curve at different locations inside the slab is 6.39 × 10 ^-5 s ^-1 during the bending segment and it tends to be 3.70 × 10 ^-5 s ^-1 in the straightening segment. The minimum creep strain rate is 7.45× 10 ^-5 s ^-1 when the stress is 14 MPa at 1 200 ℃. The strain rate of new casting machine can be less than the mini mum creep strain rate. Thus, there is only creep deformation and no plastic deformation in the bending and straightening process of steel continuous casting. Deformation of slabs depending on creep behavior only comes true. It is helpful for the design of the new casting machine and improvement of old casting machine depending on high temperature creep property.展开更多
The formation and propagation of the popular off-corner subsurface cracks in bloom continuous casting were investigated through thermo-mechanical analysis using three coupled thermo-mechanical models. A two-dimensiona...The formation and propagation of the popular off-corner subsurface cracks in bloom continuous casting were investigated through thermo-mechanical analysis using three coupled thermo-mechanical models. A two-dimensional thermo-elasto-visco-plastic finite element model was developed to predict the mould gap evolution, temperature profiles and deformation behavior of the solidified shell in the mould region. Then, a three-dimensional model was adopted to calculate the shell growth, tempera- ture history and the development of stresses and strains of the shell in the following secondary cooling zones. Finally, another three-dimensional model was used to analyze the stress distributions in the straightening region, The results showed that the off-corner cracks in the shell originated from the mould owing to the tensile strain developed in the crack sensitive regions of the solidification front, and they could be driven deeper by the possible severe surface temperature rebound and the extensive tensile stress in the secondary cooling zone, especially upon the straightening operation of the bloom casting. It is revealed that more homogenous shell temperature and thickness can be obtained through optimization of mould corner radius, casting speed and secondary cooling scheme, which help to decrease stress and strain concentration and therefore prevent the initiation of the cracks.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51275446)the Hebei Provincial Natural Science Foundation of China(Project No.E2016203492)
文摘A new continuous bending and straightening casting curve with the aim of full using of high-temperature creep deformation was proposed. The curvature of bending and straightening segment varies as sine law with arc length. The basic arc segment is shortened significantly so that the length of bending and straightening area can be extended and the time of creep behavior can be increased. The distance from so lidifying front in the slab was calculated at 1200 ℃ by finite element method. The maximum strain rate of new casting curve at different locations inside the slab is 6.39 × 10 ^-5 s ^-1 during the bending segment and it tends to be 3.70 × 10 ^-5 s ^-1 in the straightening segment. The minimum creep strain rate is 7.45× 10 ^-5 s ^-1 when the stress is 14 MPa at 1 200 ℃. The strain rate of new casting machine can be less than the mini mum creep strain rate. Thus, there is only creep deformation and no plastic deformation in the bending and straightening process of steel continuous casting. Deformation of slabs depending on creep behavior only comes true. It is helpful for the design of the new casting machine and improvement of old casting machine depending on high temperature creep property.
文摘The formation and propagation of the popular off-corner subsurface cracks in bloom continuous casting were investigated through thermo-mechanical analysis using three coupled thermo-mechanical models. A two-dimensional thermo-elasto-visco-plastic finite element model was developed to predict the mould gap evolution, temperature profiles and deformation behavior of the solidified shell in the mould region. Then, a three-dimensional model was adopted to calculate the shell growth, tempera- ture history and the development of stresses and strains of the shell in the following secondary cooling zones. Finally, another three-dimensional model was used to analyze the stress distributions in the straightening region, The results showed that the off-corner cracks in the shell originated from the mould owing to the tensile strain developed in the crack sensitive regions of the solidification front, and they could be driven deeper by the possible severe surface temperature rebound and the extensive tensile stress in the secondary cooling zone, especially upon the straightening operation of the bloom casting. It is revealed that more homogenous shell temperature and thickness can be obtained through optimization of mould corner radius, casting speed and secondary cooling scheme, which help to decrease stress and strain concentration and therefore prevent the initiation of the cracks.