Based on the multivariate continuous time autoregressive (CAR) model, this paper presents a new time-domain modal identification method of linear time-invariant system driven by the uniformly modulated Gaussian rand...Based on the multivariate continuous time autoregressive (CAR) model, this paper presents a new time-domain modal identification method of linear time-invariant system driven by the uniformly modulated Gaussian random excitation. The method can identify the physical parameters of the system from the response data. First, the structural dynamic equation is transformed into a continuous time autoregressive model (CAR) of order 3. Second, based on the assumption that the uniformly modulated function is approximately equal to a constant matrix in a very short period of time and on the property of the strong solution of the stochastic differential equation, the uniformly modulated function is identified piecewise. Two special situations are discussed. Finally, by virtue of the Girsanov theorem, we introduce a likelihood function, which is just a con- ditional density function. Maximizing the likelihood function gives the exact maximum likelihood estimators of model parameters. Numerical results show that the method has high precision and the computation is efficient.展开更多
基金supported by the National Natural Science Foundation of China (No. 50278017)
文摘Based on the multivariate continuous time autoregressive (CAR) model, this paper presents a new time-domain modal identification method of linear time-invariant system driven by the uniformly modulated Gaussian random excitation. The method can identify the physical parameters of the system from the response data. First, the structural dynamic equation is transformed into a continuous time autoregressive model (CAR) of order 3. Second, based on the assumption that the uniformly modulated function is approximately equal to a constant matrix in a very short period of time and on the property of the strong solution of the stochastic differential equation, the uniformly modulated function is identified piecewise. Two special situations are discussed. Finally, by virtue of the Girsanov theorem, we introduce a likelihood function, which is just a con- ditional density function. Maximizing the likelihood function gives the exact maximum likelihood estimators of model parameters. Numerical results show that the method has high precision and the computation is efficient.