We used a ultrasound/Fe2+/H2O2 process in continuous dosing mode to degrade the alachlor. Experimental results indicated that lower pH levels enhanced the degradation and mineralization of alachlor. The maximum alach...We used a ultrasound/Fe2+/H2O2 process in continuous dosing mode to degrade the alachlor. Experimental results indicated that lower pH levels enhanced the degradation and mineralization of alachlor. The maximum alachlor degradation (initial alachlor concentration of 50 mg/L) was as high as 100% at pH 3 with ultrasound of 100 Watts, 20 mg/L of Fe2+, 2 mg/min of H2O2 and 20℃ within 60 min reaction combined with 46.8% total organic carbon removal. Higher reaction temperatures inhibited the degradation of alachlor. Adequate dosages of Fe2+ and H2O2 in ultrasound/Fe2+/H2O2 process not only enhance the degradation efficiency of alachlor but also save the operational cost than the sole ultrasound or Fenton process. A continuous dosing mode ultrasound/Fe2+/H2O2 process was proven as an effective method to degrade the alachlor.展开更多
Distribution system reliability evaluation using the method of connectivity ignores the effect of operation constraints. This paper presents an approach that includes the effect of circuit capacity. Reliability evalua...Distribution system reliability evaluation using the method of connectivity ignores the effect of operation constraints. This paper presents an approach that includes the effect of circuit capacity. Reliability evaluation of distribution systems with parallel circuits generally requires load flow solutions. The proposed approach combines the Z-matrix contingency method with DC load flow for a much faster direct solution. Three different methods for distribution system reliability evaluation have been incorporated into a computer program. The program was validated using two distribution systems connected to the IEEE-RTS and another sample distribution system.展开更多
基金supported by the National Science Council, Republic of China (No. 101-2221-E-264-005)
文摘We used a ultrasound/Fe2+/H2O2 process in continuous dosing mode to degrade the alachlor. Experimental results indicated that lower pH levels enhanced the degradation and mineralization of alachlor. The maximum alachlor degradation (initial alachlor concentration of 50 mg/L) was as high as 100% at pH 3 with ultrasound of 100 Watts, 20 mg/L of Fe2+, 2 mg/min of H2O2 and 20℃ within 60 min reaction combined with 46.8% total organic carbon removal. Higher reaction temperatures inhibited the degradation of alachlor. Adequate dosages of Fe2+ and H2O2 in ultrasound/Fe2+/H2O2 process not only enhance the degradation efficiency of alachlor but also save the operational cost than the sole ultrasound or Fenton process. A continuous dosing mode ultrasound/Fe2+/H2O2 process was proven as an effective method to degrade the alachlor.
文摘Distribution system reliability evaluation using the method of connectivity ignores the effect of operation constraints. This paper presents an approach that includes the effect of circuit capacity. Reliability evaluation of distribution systems with parallel circuits generally requires load flow solutions. The proposed approach combines the Z-matrix contingency method with DC load flow for a much faster direct solution. Three different methods for distribution system reliability evaluation have been incorporated into a computer program. The program was validated using two distribution systems connected to the IEEE-RTS and another sample distribution system.