Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from...Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from the estimated phase of the received signal which is wrapped into (0, 2π]. By integrating Doppler frequency shifts, the variation of range can be estimated and used as an auxiliary information to help eliminating the corresponding range ambiguity. The performance of the new technique is evaluated by simulations. The results show that this technique is robust to sever phase noise and can be used effectively for ambiguity elimination of the modified sinusoidal frequency modulated continuous wave radar.展开更多
The problem of measuring exterior ballistic feature points is always difficult to solve and it is essentiale on exterior ballistic measurement.By analysis of radar reflection characteristics and non-stationary echo si...The problem of measuring exterior ballistic feature points is always difficult to solve and it is essentiale on exterior ballistic measurement.By analysis of radar reflection characteristics and non-stationary echo signals of exterior ballistic feature points,the echo data of exterior ballistic feature points is measured by using the continuous wave radar.The parameters of feature points are extracted by the empirical mode decomposition method(EMD)of Hilbert-Huang transform(HHT)spectrum analysis technique.The radar echo signal model and EMD extraction model are established to analyze the exterior ballistic mutation point detection and EMD extraction method of aliasing echo signal.Typical feature point parameters of exterior ballistic in rocket flight tests are carried out and the effectiveness of the method is verified.A new method of measuring the parameters of exterior ballistic feature point is therefore presented.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient im...Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient implementation structure,the conventional method based on least mean square(LMS)is widely used,but its performance is not sufficient for LFMCW radar.To achieve a better self-interference cancellation(SIC)result and more optimal radar performance,we present an ADSIC method based on fractional order LMS(FOLMS),which utilizes the multi-path cancellation structure and adaptively updates the weight coefficients of the cancellation system.First,we derive the iterative expression of the weight coefficients by using the fractional order derivative and short-term memory principle.Then,to solve the problem that it is difficult to select the parameters of the proposed method due to the non-stationary characteristics of radar transmitted signals,we construct the performance evaluation model of LFMCW radar,and analyze the relationship between the mean square deviation and the parameters of FOLMS.Finally,the theoretical analysis and simulation results show that the proposed method has a better SIC performance than the conventional methods.展开更多
The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple ta...The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm.展开更多
The paper presents a high-resolution automobile Frequency Modulation Continuous Wave Synthetic Aperture Radar(FMCW SAR) named MiniSAR and the procedure of its signal processing.The imaging geometry of automobile SAR i...The paper presents a high-resolution automobile Frequency Modulation Continuous Wave Synthetic Aperture Radar(FMCW SAR) named MiniSAR and the procedure of its signal processing.The imaging geometry of automobile SAR is very different from that of airborne SAR,leading to a different data processing method for automobile SAR.Therefore,in the paper,we propose an image formation approach that can well handle the focusing issues of automobile SAR.The effects of the strong reflected signal and the spatial-variant synthetic aperture length are analyzed.The processed results with automobile FMCW SAR read data validate the presented method.展开更多
In this paper,the spectral estimation algorithm is extended to the detection of human vi-tal signs by mm-wave frequency modulated continuous wave(FMCW)radar,and a comprehensive algorithm based on spectrum refinement a...In this paper,the spectral estimation algorithm is extended to the detection of human vi-tal signs by mm-wave frequency modulated continuous wave(FMCW)radar,and a comprehensive algorithm based on spectrum refinement and the extended differentiate and cross multiply al-gorithm(DCMA)has been proposed.Firstly,the improved DFT algorithm is used to accurately obtain the distance window of human body.Secondly,phase ambiguity in phase extraction is avoided based on extended DCMA algorithm.Then,the spectrum range of refinement is determ-ined according to the peak position of the spectrum,and the respiratory and heartbeat frequency information is obtained by using chirp z-transform(CZT)algorithm to perform local spectrum re-finement.For verification,this paper has simulated the radar echo signal modulated by the simu-lated cardiopulmonary signal according to the proposed algorithm.By recovering the simulated car-diopulmonary signal,the high-precision respiratory and heartbeat frequency have been obtained.The results show that the proposed algorithm can effectively restore human breathing and heart-beat signals,and the relative error of frequency estimation is basically kept below 1.5%.展开更多
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
基金Sponsored by the Ministerial Level Advanced Research Foundation (323010101-50)
文摘Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from the estimated phase of the received signal which is wrapped into (0, 2π]. By integrating Doppler frequency shifts, the variation of range can be estimated and used as an auxiliary information to help eliminating the corresponding range ambiguity. The performance of the new technique is evaluated by simulations. The results show that this technique is robust to sever phase noise and can be used effectively for ambiguity elimination of the modified sinusoidal frequency modulated continuous wave radar.
基金Supported by the National Natural Science Foundation of China(61174219,51677192)
文摘The problem of measuring exterior ballistic feature points is always difficult to solve and it is essentiale on exterior ballistic measurement.By analysis of radar reflection characteristics and non-stationary echo signals of exterior ballistic feature points,the echo data of exterior ballistic feature points is measured by using the continuous wave radar.The parameters of feature points are extracted by the empirical mode decomposition method(EMD)of Hilbert-Huang transform(HHT)spectrum analysis technique.The radar echo signal model and EMD extraction model are established to analyze the exterior ballistic mutation point detection and EMD extraction method of aliasing echo signal.Typical feature point parameters of exterior ballistic in rocket flight tests are carried out and the effectiveness of the method is verified.A new method of measuring the parameters of exterior ballistic feature point is therefore presented.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
文摘Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient implementation structure,the conventional method based on least mean square(LMS)is widely used,but its performance is not sufficient for LFMCW radar.To achieve a better self-interference cancellation(SIC)result and more optimal radar performance,we present an ADSIC method based on fractional order LMS(FOLMS),which utilizes the multi-path cancellation structure and adaptively updates the weight coefficients of the cancellation system.First,we derive the iterative expression of the weight coefficients by using the fractional order derivative and short-term memory principle.Then,to solve the problem that it is difficult to select the parameters of the proposed method due to the non-stationary characteristics of radar transmitted signals,we construct the performance evaluation model of LFMCW radar,and analyze the relationship between the mean square deviation and the parameters of FOLMS.Finally,the theoretical analysis and simulation results show that the proposed method has a better SIC performance than the conventional methods.
文摘The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm.
基金Supported jointly by the Hundred Talents Program of the Chinese Academy of Sciences and General Program of National Natural Science Foundation of China(No.6117212)
文摘The paper presents a high-resolution automobile Frequency Modulation Continuous Wave Synthetic Aperture Radar(FMCW SAR) named MiniSAR and the procedure of its signal processing.The imaging geometry of automobile SAR is very different from that of airborne SAR,leading to a different data processing method for automobile SAR.Therefore,in the paper,we propose an image formation approach that can well handle the focusing issues of automobile SAR.The effects of the strong reflected signal and the spatial-variant synthetic aperture length are analyzed.The processed results with automobile FMCW SAR read data validate the presented method.
文摘In this paper,the spectral estimation algorithm is extended to the detection of human vi-tal signs by mm-wave frequency modulated continuous wave(FMCW)radar,and a comprehensive algorithm based on spectrum refinement and the extended differentiate and cross multiply al-gorithm(DCMA)has been proposed.Firstly,the improved DFT algorithm is used to accurately obtain the distance window of human body.Secondly,phase ambiguity in phase extraction is avoided based on extended DCMA algorithm.Then,the spectrum range of refinement is determ-ined according to the peak position of the spectrum,and the respiratory and heartbeat frequency information is obtained by using chirp z-transform(CZT)algorithm to perform local spectrum re-finement.For verification,this paper has simulated the radar echo signal modulated by the simu-lated cardiopulmonary signal according to the proposed algorithm.By recovering the simulated car-diopulmonary signal,the high-precision respiratory and heartbeat frequency have been obtained.The results show that the proposed algorithm can effectively restore human breathing and heart-beat signals,and the relative error of frequency estimation is basically kept below 1.5%.