In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance mi...This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance minimization optimality equation and the existence of a variance minimal policy that is canonical, but also the existence of solutions to the two variance minimization optimality inequalities and the existence of a variance minimal policy which may not be canonical. An example is given to illustrate all of our conditions.展开更多
Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of off...Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.展开更多
This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space...This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space. The main purpose of this paper is to find the policy with the minimal variance in the deterministic stationary policy space. Unlike the traditional Markov decision process, the cost function in the variance criterion will be affected by future actions. To this end, we convert the variance minimization problem into a standard (MDP) by introducing a concept called pseudo-variance. Further, by giving the policy iterative algorithm of pseudo-variance optimization problem, the optimal policy of the original variance optimization problem is derived, and a sufficient condition for the variance optimal policy is given. Finally, we use an example to illustrate the conclusion of this paper.展开更多
The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average d...The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constan...This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.展开更多
Let X=(Omega,F,F-t,X(t),theta(t),P-x) be a jump Markov process with q-pair q(x)-q(x, A). In this paper, the equilibrium principle is established and equilibrium functions, energy, capacity and related problems is inve...Let X=(Omega,F,F-t,X(t),theta(t),P-x) be a jump Markov process with q-pair q(x)-q(x, A). In this paper, the equilibrium principle is established and equilibrium functions, energy, capacity and related problems is investigated in terms of the q-pair q(x)-q(x, A).展开更多
The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and tim...The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and time varying,and the uncertain parameters are assumed to be norm bounded.By means of Takagi-Sugeno fuzzy models,the overall closed-loop fuzzy dynamics are constructed through selected membership functions.By selecting the appropriate Lyapunov-Krasovskii functions,the sufficient condition is given such that the uncertain fuzzy neutral MJSs are stochastically stability for all admissible uncertainties and satisfies the given H∞ control index.The stability and H∞ control criteria are formulated in the form of linear matrix inequalities,which can be easily checked in practice.Practical examples illustrate the effectiveness of the developed techniques.展开更多
This study is concerned with the problem of finite-time H∞ filter design for uncertain discrete-time Markov Jump stochastic systems. Our attention is focused on the design of mode-dependent H∞ filter to ensure the f...This study is concerned with the problem of finite-time H∞ filter design for uncertain discrete-time Markov Jump stochastic systems. Our attention is focused on the design of mode-dependent H∞ filter to ensure the finite-time stability of the filtering error system and preserve a prescribed H∞ performance level for all admissible uncertainties. Sufficient conditions of filtering design for the system under consideration are developed and the corresponding filter parameters can be achieved in terms of linear matrix inequalities (LMI). Finally, a numerical example is provided to illustrate the validity of the proposed method.展开更多
This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not...This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not only mean-square finite-time bounded but also has a prescribed finite-time H_(∞) performance. First, the case where the switching modes of the filter align with those of the MJS is considered. A numerically tractable filter design approach is proposed utilizing a mode-dependent Lyapunov function, Schur’s complement, and Dynkin’s formula. Then, the study is extended to a scenario where the switching modes of the filter can differ from those of the MJS. To address this situation, a mode-mismatched filter design approach is developed by leveraging a hidden Markov model to describe the asynchronous mode switching and the double expectation formula. Finally, a spring system model subject to a Markov chain is employed to validate the effectiveness of the quantized filter design approaches.展开更多
We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-...We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.展开更多
In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the...In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the reality,the state and input constraints have been considered along with the external disturbances.An iterative algorithm is designed such that model predictive noncooperative game could converge to the socalledε-Nash equilibrium in a distributed manner.Sufficient conditions are established to guarantee the convergence of the proposed algorithm.In addition,a set of easy-to-check conditions are provided to ensure the mean-square uniform bounded stability of the underlying MPSs.Finally,a numerical example on a group of spacecrafts is studied to verify the effectiveness of the proposed method.展开更多
This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>...This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>∞</sub> </span>performance. Due to the difference in propagation channels, signal strength and phase will inevitably change randomly and cause the waste of signals resources. In response to this problem, a channel fading model with multiplicative noise is introduced. And then a nonstationary filter, which receives signals more efficiently is designed. Meanwhile Lyapunov function is constructed for error analysis. Finally, the gain matrix for filtering is obtained by solving the matrix inequality, and the results showed that the nonstationary filter converges to the stable point more quickly than the traditional asynchronous filter, the stability of the designed filter is verified.展开更多
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
基金supported by the National Natural Science Foundation of China(10801056)the Natural Science Foundation of Ningbo(2010A610094)
文摘This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance minimization optimality equation and the existence of a variance minimal policy that is canonical, but also the existence of solutions to the two variance minimization optimality inequalities and the existence of a variance minimal policy which may not be canonical. An example is given to illustrate all of our conditions.
文摘Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.
文摘This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space. The main purpose of this paper is to find the policy with the minimal variance in the deterministic stationary policy space. Unlike the traditional Markov decision process, the cost function in the variance criterion will be affected by future actions. To this end, we convert the variance minimization problem into a standard (MDP) by introducing a concept called pseudo-variance. Further, by giving the policy iterative algorithm of pseudo-variance optimization problem, the optimal policy of the original variance optimization problem is derived, and a sufficient condition for the variance optimal policy is given. Finally, we use an example to illustrate the conclusion of this paper.
基金the National Natural Science Foundation of China (60674027, 60574007)Doctoral Foundation of Education Ministry of China (20050446001).
文摘The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
基金supported by the National Natural Science Foundation of China (No.60574001)Program for New Century Excellent Talents in University (No.050485)Program for Innovative Research Team of Jiangnan University
文摘This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.
文摘Let X=(Omega,F,F-t,X(t),theta(t),P-x) be a jump Markov process with q-pair q(x)-q(x, A). In this paper, the equilibrium principle is established and equilibrium functions, energy, capacity and related problems is investigated in terms of the q-pair q(x)-q(x, A).
基金supported by the National Natural Science Foundation of China (6097400160904045)+2 种基金the National Natural Science Foundation of Jiangsu Province (BK2009068)the Six Projects Sponsoring Talent Summits of Jiangsu Provincethe Program for Postgraduate Scientific Research and Innovation of Jiangsu Province
文摘The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and time varying,and the uncertain parameters are assumed to be norm bounded.By means of Takagi-Sugeno fuzzy models,the overall closed-loop fuzzy dynamics are constructed through selected membership functions.By selecting the appropriate Lyapunov-Krasovskii functions,the sufficient condition is given such that the uncertain fuzzy neutral MJSs are stochastically stability for all admissible uncertainties and satisfies the given H∞ control index.The stability and H∞ control criteria are formulated in the form of linear matrix inequalities,which can be easily checked in practice.Practical examples illustrate the effectiveness of the developed techniques.
文摘This study is concerned with the problem of finite-time H∞ filter design for uncertain discrete-time Markov Jump stochastic systems. Our attention is focused on the design of mode-dependent H∞ filter to ensure the finite-time stability of the filtering error system and preserve a prescribed H∞ performance level for all admissible uncertainties. Sufficient conditions of filtering design for the system under consideration are developed and the corresponding filter parameters can be achieved in terms of linear matrix inequalities (LMI). Finally, a numerical example is provided to illustrate the validity of the proposed method.
基金Project supported by the Natural Science Foundation of the Anhui Higher Education Institutions (Grant Nos. KJ2020A0248 and 2022AH050310)。
文摘This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not only mean-square finite-time bounded but also has a prescribed finite-time H_(∞) performance. First, the case where the switching modes of the filter align with those of the MJS is considered. A numerically tractable filter design approach is proposed utilizing a mode-dependent Lyapunov function, Schur’s complement, and Dynkin’s formula. Then, the study is extended to a scenario where the switching modes of the filter can differ from those of the MJS. To address this situation, a mode-mismatched filter design approach is developed by leveraging a hidden Markov model to describe the asynchronous mode switching and the double expectation formula. Finally, a spring system model subject to a Markov chain is employed to validate the effectiveness of the quantized filter design approaches.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61873002, 61703004, 61973199, 61573008, and 61973200)。
文摘We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.
基金This work was supported by the National Natural Science Foundation of China(62122063,62073268,U22B2036,11931015)the Young Star of Science and Technology in Shaanxi Province(2020KJXX-078)+1 种基金the National Science Fund for Distinguished Young Scholars(62025602)the XPLORER PRIZE。
文摘In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the reality,the state and input constraints have been considered along with the external disturbances.An iterative algorithm is designed such that model predictive noncooperative game could converge to the socalledε-Nash equilibrium in a distributed manner.Sufficient conditions are established to guarantee the convergence of the proposed algorithm.In addition,a set of easy-to-check conditions are provided to ensure the mean-square uniform bounded stability of the underlying MPSs.Finally,a numerical example on a group of spacecrafts is studied to verify the effectiveness of the proposed method.
文摘This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>∞</sub> </span>performance. Due to the difference in propagation channels, signal strength and phase will inevitably change randomly and cause the waste of signals resources. In response to this problem, a channel fading model with multiplicative noise is introduced. And then a nonstationary filter, which receives signals more efficiently is designed. Meanwhile Lyapunov function is constructed for error analysis. Finally, the gain matrix for filtering is obtained by solving the matrix inequality, and the results showed that the nonstationary filter converges to the stable point more quickly than the traditional asynchronous filter, the stability of the designed filter is verified.