A 1-V third order one-bit continuous-time(CT) EA modulator is presented. Designed in the SMIC mixedsignal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficien...A 1-V third order one-bit continuous-time(CT) EA modulator is presented. Designed in the SMIC mixedsignal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficient circuit design methodology for the CT ZA modulator is proposed and verified. Low power dissipation is achieved through the use of two-stage class A/AB amplifiers. The presented modulator achieves 81.4-dB SNDR and 85-dB dynamic range in a 20-kHz bandwidth with an over sampling ratio of 128. The total power consumption of the modulator is only 60 μW from a 1-V power supply and the prototype occupies an active area of 0.12 mm^2.展开更多
A continuous-time ∑△ modulator with a third-order loop filter and a 3-bit quantizer is realized. The modulator is robust to the excess loop delay, clock jitter, and RC product variations. When designing the integra...A continuous-time ∑△ modulator with a third-order loop filter and a 3-bit quantizer is realized. The modulator is robust to the excess loop delay, clock jitter, and RC product variations. When designing the integrator, an op-amp with novel GBW extension structure, improving the linearity of the loop filter, is adopted. The prototype chip is designed in a 130 nm CMOS technology, targeting FM radio applications. The experimental results show that the prototype modulator achieves a 72 dB dynamic range and a 70.7 dB signal to noise and distortion ratio over a 500 kHz bandwidth with a 26 MHz clock, consuming 2.52 mW power from a 1.2 V supply.展开更多
基金supported by the National High Technology Research and Development Program of China(No.2008AA010702)
文摘A 1-V third order one-bit continuous-time(CT) EA modulator is presented. Designed in the SMIC mixedsignal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficient circuit design methodology for the CT ZA modulator is proposed and verified. Low power dissipation is achieved through the use of two-stage class A/AB amplifiers. The presented modulator achieves 81.4-dB SNDR and 85-dB dynamic range in a 20-kHz bandwidth with an over sampling ratio of 128. The total power consumption of the modulator is only 60 μW from a 1-V power supply and the prototype occupies an active area of 0.12 mm^2.
文摘A continuous-time ∑△ modulator with a third-order loop filter and a 3-bit quantizer is realized. The modulator is robust to the excess loop delay, clock jitter, and RC product variations. When designing the integrator, an op-amp with novel GBW extension structure, improving the linearity of the loop filter, is adopted. The prototype chip is designed in a 130 nm CMOS technology, targeting FM radio applications. The experimental results show that the prototype modulator achieves a 72 dB dynamic range and a 70.7 dB signal to noise and distortion ratio over a 500 kHz bandwidth with a 26 MHz clock, consuming 2.52 mW power from a 1.2 V supply.