Robust quantum cascade laser(QCL)enduring high temperature continuous-wave(CW)operation is of critical importance for some applications.We report on the realization of lattice-matched InGaAs/InAlAs/InP QCL materials g...Robust quantum cascade laser(QCL)enduring high temperature continuous-wave(CW)operation is of critical importance for some applications.We report on the realization of lattice-matched InGaAs/InAlAs/InP QCL materials grown by metal-organic chemical vapor deposition(MOCVD).High interface quality structures designed for light emission at 8.5μm are achieved by optimizing and precise controlling of growth conditions.A CW output power of 1.04 W at 288 K was obtained from a 4 mm-long and 10μm-wide coated laser.Corresponding maximum wall-plug efficiency and threshold current density were 7.1%and 1.18 kA/cm2,respectively.The device can operate in CW mode up to 408 K with an output power of 160 mW.展开更多
In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Consi...In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.展开更多
Optical enhancement cavity(OEC)is a powerful tool for fundamental research and diagnostics.In this paper,the progress of a continuous-wave OEC to realize of megawatt cavity for a novel light source based on a steady-s...Optical enhancement cavity(OEC)is a powerful tool for fundamental research and diagnostics.In this paper,the progress of a continuous-wave OEC to realize of megawatt cavity for a novel light source based on a steady-state microbunching(SSMB)mechanism,is reported.After efficiently suppressing all external noise and optimizing the alignment,mode-matching,and polarization matching,stable and long-term locking is achieved with the help of two feedback loops.The modal instability phenomenon caused by the surface thermoelastic deformation is observed.A pair of D-shape mirrors are utilized to remove the high-order modes.Finally,an intra-cavity average power of 30 kW is reached.展开更多
We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ...We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).展开更多
A 194-nm cw laser is an essential part in the mercury ion optical frequency standard. We report the generation of over 2mW continuous-wave radiation at 194nm in a beta barium borate crystal using a simple sum frequenc...A 194-nm cw laser is an essential part in the mercury ion optical frequency standard. We report the generation of over 2mW continuous-wave radiation at 194nm in a beta barium borate crystal using a simple sum frequency mixing (SFM) system. One source beams at 718nm is resonantly enhanced with a cavity and the other at 266mn makes a single pass. Considering the walk-off effect in SFM, the source beam waists are designed to be elliptical, thus the conversion efficiency can be promoted. The 266-nm beam produced by frequency doubling of 532-nm laser is shaped close to the diffraction limit to achieve better mode matching.展开更多
We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. Fo...We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.展开更多
We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresp...We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresponding to a slope efficiency of 43.3 %. In the Q-switched regime, the maximum pulse energy of 3.51 mJ is reached at a pulse repetition rate of 100 Hz, a pulse duration of 90.5ns and a pump power of 25.5 W. At the repetition rate of 400 Hz, the output energy is 2.12m J, corresponding to a pulse duration of 125.4 ns.展开更多
We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The osc...We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The oscillator operates at 1079.48nrn with 80.94% slope efficiency and shows no limit of temperature and nonlinear effects. These indicate that the passive fiber components and the gain fiber are all qualified for the high power environ- ment. No evidence of the signal power roll-over shows that this oscillator possesses the capacity to higher output with available pump power.展开更多
Multi-wavelength continuous-wave self-Raman laser with an a-cut composite YVO4/Nd:YVO4/YVO4 crystal pumped by an 879-nm wavelength-locked laser diode is demonstrated for the first time.Multi-wavelength Raman lasers at...Multi-wavelength continuous-wave self-Raman laser with an a-cut composite YVO4/Nd:YVO4/YVO4 crystal pumped by an 879-nm wavelength-locked laser diode is demonstrated for the first time.Multi-wavelength Raman lasers at 1168.4,1176,1178.7,and 1201.6 nm are achieved by the first Stokes shift of the multi-wavelength fundamental lasers at 1064,1066.7,1073.6,1084,and 1085.6 nm with two Raman shifts of 890 and 816 cm^-1.A maximum Raman output power of 2.56 W is achieved through the use of a 20-mm-long composite crystal,with a corresponding optical conversion efficiency of 9.8%.The polarization directions of different fundamental and Raman lasers are investigated and found to be orthogonalπandσpolarizations.These orthogonally polarized multi-wavelength lasers with small wavelength separation pave the way to the development of a potential laser source for application in spectral analysis,laser radar and THz generation.展开更多
We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pu...We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pump source.The cw Ho:SYSO laser produces 13.0 W output power at 2097.9 nm and 56.0%slope efficiency with respect to the absorbed pump power.In the AO Q-switched regime,at a pulse repetition frequency of 5 kHz,the Ho:SYSO laser yields 2.1 mJ pulse energy and 21 ns pulse width,resulting in a calculated peak power of 100 k W.In addition,at the maximum output level,the beam quality factor of the Q-switched Ho:SYSO laser is measured to be about 1.6.展开更多
In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra...In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.展开更多
We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped C...We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401 1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%.展开更多
A high-resolution two-photon spectrum of 5S1/2 → 5P3/2 → 5D5/2 transitions in a thermal SSRb vapor cell is presented by using an optical frequency comb and a cw laser. The fluorescence of 6P3/2 → 5S1/2 spontaneous ...A high-resolution two-photon spectrum of 5S1/2 → 5P3/2 → 5D5/2 transitions in a thermal SSRb vapor cell is presented by using an optical frequency comb and a cw laser. The fluorescence of 6P3/2 → 5S1/2 spontaneous emission is detected when the cw laser frequency is scanned from the 5S1/2 ground state to 5P3/2 hyperfine levels and the optical frequency comb repetition rate is fixed. The hyperfine splittings (Ff = 2-5) of the 5D5/2 excited state are well resolved. The dependences of fluorescence intensities on the cw laser intensity and temperature of SSRb vapor eel1 are studied, respectively. The experimental results are in good agreement with the theoretical analyses.展开更多
A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM ...A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM unstable-stable hybrid resonator. At an incident pump power of 820 W, a maximum cw output of 240 W at 1064nm is obtained. The optical-to-optical efficiency and Mope efficiency are 40.7% and 53.2%, respectively. The M2 factors in the unstable direction and in the stable direction are 4.38 and 5.44, respectively.展开更多
We present our efforts towards power scaling of Er:Lu_(2)O_(3)lasers at 2.85μm.By applying a dual-end diode-pumped resonator scheme,we achieve an output power of 14.1 W at an absorbed pump power of 59.7 W with a slop...We present our efforts towards power scaling of Er:Lu_(2)O_(3)lasers at 2.85μm.By applying a dual-end diode-pumped resonator scheme,we achieve an output power of 14.1 W at an absorbed pump power of 59.7 W with a slope efficiency of 26%.In a single-end pumped resonator scheme,an output power of 10.1 W is reached under 41.9 W of absorbed pump power.To the best of our knowledge,this is the first single crystalline mid-infrared rare-earth-based solid-state laser with an output power exceeding 10 W at room temperature.展开更多
In this paper, laser induced plasma signals were analyzed during keyhole welding through three methods. According to the results, the relativity between optical and acoustic signals of plasma is shown when welds are i...In this paper, laser induced plasma signals were analyzed during keyhole welding through three methods. According to the results, the relativity between optical and acoustic signals of plasma is shown when welds are in full-penetration, or partial-penetration and non-penetration.展开更多
By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calcu...By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.展开更多
Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal ...Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal is studied, Under the experimental conditions, the plasma optic signal has good response to variety of the weld penetration, and the signal's RMS value increases with the penetration in a quadratic curve mode. The inherent relation between the plasma optic signal and the penetration depth is also analyzed. It is also found that, between the two common parameters of laser power and welding speed, laser power has more influence on penetration while welding speed has more influence on weld width. The research results provide theoretic and practical bases for penetration real-time monitoring or predicting in partial-penetration laser welding,展开更多
A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cro...A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cross- correlation of noise and amplitude modulation of signal on laser statistical properties is studied by using the linearized approximation. The analytic expression of signal-to-noise ratio (SNR) is calculated. It is found that the phenomena of stochastic resonance (SR) respectively exist in the curves of the SNR versus the noise cross-correlation coefficient λ and the SNR versus the pump parameter a, as well as the SNR versus the signal frequency ω in our model. It is shown that there are three different typies of SR in the model: the conventional form of SR, the SR in the broad sense, and the bona fide SR.展开更多
The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, t...The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals.展开更多
基金The authors would thank Ping Liang and Ying Hu for their help with device fabrication.This work was supported by the National Key Research and Development Program of China(Grant No.2020YFB0408401)in part by the National Natural Science Foundation of China(Grant Nos.61991430,61774146,61790583,61734006,61835011,61674144,61774150,61805168)+1 种基金in part by Beijing Municipal Science&Technology Commission(Grant No.Z201100004020006)in part by the Key Projects of the Chinese Academy of Sciences(Grant Nos.2018147,YJKYYQ20190002,QYZDJ-SSW-JSC027,XDB43000000,ZDKYYQ20200006).
文摘Robust quantum cascade laser(QCL)enduring high temperature continuous-wave(CW)operation is of critical importance for some applications.We report on the realization of lattice-matched InGaAs/InAlAs/InP QCL materials grown by metal-organic chemical vapor deposition(MOCVD).High interface quality structures designed for light emission at 8.5μm are achieved by optimizing and precise controlling of growth conditions.A CW output power of 1.04 W at 288 K was obtained from a 4 mm-long and 10μm-wide coated laser.Corresponding maximum wall-plug efficiency and threshold current density were 7.1%and 1.18 kA/cm2,respectively.The device can operate in CW mode up to 408 K with an output power of 160 mW.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 60637010 and 60671036)the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Applied Fundamental Research Project, China(Grant No 07JCZDJC05900)
文摘In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.
基金the Fund from Tsinghua University Initiative Scientific Research Program,China(Grant No.20191081195).
文摘Optical enhancement cavity(OEC)is a powerful tool for fundamental research and diagnostics.In this paper,the progress of a continuous-wave OEC to realize of megawatt cavity for a novel light source based on a steady-state microbunching(SSMB)mechanism,is reported.After efficiently suppressing all external noise and optimizing the alignment,mode-matching,and polarization matching,stable and long-term locking is achieved with the help of two feedback loops.The modal instability phenomenon caused by the surface thermoelastic deformation is observed.A pair of D-shape mirrors are utilized to remove the high-order modes.Finally,an intra-cavity average power of 30 kW is reached.
基金Project supported by the National Natural Science Foundation of China(Grant No.61974141)Tianjin Municipal Science and Technology BureauScience and Technology Innovation Bureau of China-Singapore Tianjin Eco-City。
文摘We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436103 and 11204374
文摘A 194-nm cw laser is an essential part in the mercury ion optical frequency standard. We report the generation of over 2mW continuous-wave radiation at 194nm in a beta barium borate crystal using a simple sum frequency mixing (SFM) system. One source beams at 718nm is resonantly enhanced with a cavity and the other at 266mn makes a single pass. Considering the walk-off effect in SFM, the source beam waists are designed to be elliptical, thus the conversion efficiency can be promoted. The 266-nm beam produced by frequency doubling of 532-nm laser is shaped close to the diffraction limit to achieve better mode matching.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632801the National Key Research and Development Program under Grant No 2016YFB0402303+2 种基金the National Natural Science Foundation of China under Grant Nos61435014,61627822,61574136 and 61306058the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4the Beijing Natural Science Foundation under Grant No 4162060
文摘We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant No 2013M540288+2 种基金the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresponding to a slope efficiency of 43.3 %. In the Q-switched regime, the maximum pulse energy of 3.51 mJ is reached at a pulse repetition rate of 100 Hz, a pulse duration of 90.5ns and a pump power of 25.5 W. At the repetition rate of 400 Hz, the output energy is 2.12m J, corresponding to a pulse duration of 125.4 ns.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2013AA031501the Fundamental Research Funds for the Central Universities under Grant No 2014TS017
文摘We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The oscillator operates at 1079.48nrn with 80.94% slope efficiency and shows no limit of temperature and nonlinear effects. These indicate that the passive fiber components and the gain fiber are all qualified for the high power environ- ment. No evidence of the signal power roll-over shows that this oscillator possesses the capacity to higher output with available pump power.
基金Project supported by the National Natural Science Foundation of China(Grant No.11774301)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11804292)
文摘Multi-wavelength continuous-wave self-Raman laser with an a-cut composite YVO4/Nd:YVO4/YVO4 crystal pumped by an 879-nm wavelength-locked laser diode is demonstrated for the first time.Multi-wavelength Raman lasers at 1168.4,1176,1178.7,and 1201.6 nm are achieved by the first Stokes shift of the multi-wavelength fundamental lasers at 1064,1066.7,1073.6,1084,and 1085.6 nm with two Raman shifts of 890 and 816 cm^-1.A maximum Raman output power of 2.56 W is achieved through the use of a 20-mm-long composite crystal,with a corresponding optical conversion efficiency of 9.8%.The polarization directions of different fundamental and Raman lasers are investigated and found to be orthogonalπandσpolarizations.These orthogonally polarized multi-wavelength lasers with small wavelength separation pave the way to the development of a potential laser source for application in spectral analysis,laser radar and THz generation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51572053,61805209 and U1530152
文摘We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pump source.The cw Ho:SYSO laser produces 13.0 W output power at 2097.9 nm and 56.0%slope efficiency with respect to the absorbed pump power.In the AO Q-switched regime,at a pulse repetition frequency of 5 kHz,the Ho:SYSO laser yields 2.1 mJ pulse energy and 21 ns pulse width,resulting in a calculated peak power of 100 k W.In addition,at the maximum output level,the beam quality factor of the Q-switched Ho:SYSO laser is measured to be about 1.6.
基金supported by the National Key R&D Program of China (No. 2017YFA0304203)the National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC)+3 种基金Changjiang Scholars and Innovative Research Team at the University of the Ministry of Education of China (No. IRT_17R70)National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108 and 627010407)111 Project (No. D18001)Fund for Shanxi (No. 1331KSC)
文摘In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60978021,61178028,and 10804055)the Program for New Century Excellent Talents in University,China(Grant No.NCET-10-0610)+1 种基金the National Basic Research Program of China(Grant No.2007CB310403)the National High Technology Research and Development Program of China(Grant No.2011AA030208)
文摘We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401 1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921603the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No IRT13076the National Natural Science Foundation of China under Grant Nos 61378049,10934004,61575116 and 61505100
文摘A high-resolution two-photon spectrum of 5S1/2 → 5P3/2 → 5D5/2 transitions in a thermal SSRb vapor cell is presented by using an optical frequency comb and a cw laser. The fluorescence of 6P3/2 → 5S1/2 spontaneous emission is detected when the cw laser frequency is scanned from the 5S1/2 ground state to 5P3/2 hyperfine levels and the optical frequency comb repetition rate is fixed. The hyperfine splittings (Ff = 2-5) of the 5D5/2 excited state are well resolved. The dependences of fluorescence intensities on the cw laser intensity and temperature of SSRb vapor eel1 are studied, respectively. The experimental results are in good agreement with the theoretical analyses.
文摘A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM unstable-stable hybrid resonator. At an incident pump power of 820 W, a maximum cw output of 240 W at 1064nm is obtained. The optical-to-optical efficiency and Mope efficiency are 40.7% and 53.2%, respectively. The M2 factors in the unstable direction and in the stable direction are 4.38 and 5.44, respectively.
基金supported by the National Natural Science Foundation of China(Nos.62175132,61605100,and 12174212)the Natural Science Foundation of Shandong Province(Nos.ZR2020MF116 and ZR2019MF061)the Young Scholars Program of Shandong University。
文摘We present our efforts towards power scaling of Er:Lu_(2)O_(3)lasers at 2.85μm.By applying a dual-end diode-pumped resonator scheme,we achieve an output power of 14.1 W at an absorbed pump power of 59.7 W with a slope efficiency of 26%.In a single-end pumped resonator scheme,an output power of 10.1 W is reached under 41.9 W of absorbed pump power.To the best of our knowledge,this is the first single crystalline mid-infrared rare-earth-based solid-state laser with an output power exceeding 10 W at room temperature.
文摘In this paper, laser induced plasma signals were analyzed during keyhole welding through three methods. According to the results, the relativity between optical and acoustic signals of plasma is shown when welds are in full-penetration, or partial-penetration and non-penetration.
基金supported by the Key Project Scientific Research Foundation from the Education Department of Hubei Province of China(Grant No D200725001)
文摘By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
基金This project is supported by National Defense Science Foundation of China (No.614010).
文摘Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal is studied, Under the experimental conditions, the plasma optic signal has good response to variety of the weld penetration, and the signal's RMS value increases with the penetration in a quadratic curve mode. The inherent relation between the plasma optic signal and the penetration depth is also analyzed. It is also found that, between the two common parameters of laser power and welding speed, laser power has more influence on penetration while welding speed has more influence on weld width. The research results provide theoretic and practical bases for penetration real-time monitoring or predicting in partial-penetration laser welding,
基金The project supported by National Natural Science Foundation of China under Grant No.10275025
文摘A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cross- correlation of noise and amplitude modulation of signal on laser statistical properties is studied by using the linearized approximation. The analytic expression of signal-to-noise ratio (SNR) is calculated. It is found that the phenomena of stochastic resonance (SR) respectively exist in the curves of the SNR versus the noise cross-correlation coefficient λ and the SNR versus the pump parameter a, as well as the SNR versus the signal frequency ω in our model. It is shown that there are three different typies of SR in the model: the conventional form of SR, the SR in the broad sense, and the bona fide SR.
基金supported by the National Natural Science Foundation of China(61201391)
文摘The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals.