Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicin...Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicine in the management of cancer,associated with a lower risk of recur-rence and increased survival.Several avenues of research demonstrate reduction in growth,proliferation,and increased apoptosis of cancer cells,including breast,prostate,colorectal,and lung cancer,when cultured by serum collected after exercise in vitro(i.e.,the cultivation of cancer cell lines in an experimental setting,which simplifies the biological system and provides mechanistic insight into cell responses).The underlying mechanisms of exercise-induced cancer suppressive effects may be attributed to the alteration in circulating factors,such as skeletal muscle-induced cytokines(i.e.,myokines)and hormones.However,exercise-induced tumor suppressive effects and detailed information about training interventions are not well investigated,constraining more precise application of exercise medicine within clinical oncology.To date,it remains unclear what role different training modes(i.e.,resistance and aerobic training)as well as volume and intensity have on exercise-condi-tioned serum and its effects on cancer cells.Nevertheless,the available evidence is that a single bout of aerobic training at moderate to vigorous intensity has cancer suppressive effects,while for chronic training interventions,exercise volume appears to be an influential candidate driving cancer inhibitory effects regardless of training mode.Insights for future research investigating training modes,volume and intensity are provided to further our understanding of the effects of exercise-conditioned serum on cancer cells.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou...Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.展开更多
A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-fo...A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-forward equal-izer(FFE)is employed in the quarter-rate transmitter(TX).The half-rate receiver(RX)incorporates a continuous-time linear equal-izer(CTLE),a 3-stage high-speed slicer with multi-clock-phase sampling,and a clock and data recovery(CDR).The experimen-tal results show that the TRx operates at a maximum speed of 56 Gb/s with chip-on board(COB)assembly.The 28 Gb/s NRZ eye diagram shows a far-end vertical eye opening of 210 mV with an output amplitude of 351 mV single-ended and the 56 Gb/s PAM-4 eye diagram exhibits far-end eye opening of 33 mV(upper-eye),31 mV(mid-eye),and 28 mV(lower-eye)with an output amplitude of 353 mV single-ended.The recovered 14 GHz clock from the RX exhibits random jitter(RJ)of 469 fs and deterministic jitter(DJ)of 8.76 ps.The 875 Mb/s de-multiplexed data features 593 ps horizontal eye opening with 32.02 ps RJ,at bit-error rate(BER)of 10-5(0.53 UI).The power dissipation of TX and RX are 125 and 181.4 mW,respectively,from a 0.9-V sup-ply.展开更多
Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous ...Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation.Among these,Q-2(named after quebracho extract and EOC blend 2,composed of carvacrol,thymol,and eugenol)and C-10(chestnut extract and EOC blend 10,consisting of oregano and thyme essential oils and limonene)have been investigated in detail in the present study with the semi-continuous rumen simulation technique(Rusitec)in three independent runs.For this purpose,Q-2 and C-10,dosed according to the previous study,were compared with a non-supplemented diet(negative control,NC)and with one supplemented with the commercial EOC-based Agolin^(R) Ruminant(positive control,PC).Results From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH,ammonia,protozoa count,and gas composition.Feed residues were collected for the determination of ruminal degradability.On d 10,samples of incubation liquid were also characterised for bacterial,archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons.Regardless of the duration of the fermentation period,Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia(-37%by Q-2,-34%by PC)or methane formation(-12%by C-10,-12%by PC).The PC was also responsible for lower feed degradability and bacterial and fungal richness,whereas Q-2 and C-10 effects,particularly on microbiome diversities,were limited compared to NC.Conclusions All additives showed the potential to mitigate methane or ammonia formation,or both,in vitro over a period of 10 d.However,several differences occurred between PC and Q-2/C-10,indicating different mechanisms of action.The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects.Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties,their mechanisms of action remain mostly to be elucidated.展开更多
In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of...In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.展开更多
This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.3...This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component.展开更多
Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that ...Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.展开更多
Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ...Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.展开更多
Vitamin B_(1) is widely applied in the healthcare and food industry as an antineuritic and antioxidant to maintain the normal functioning of nerve conduction,the heart,and the gastrointestinal tract.This study reports...Vitamin B_(1) is widely applied in the healthcare and food industry as an antineuritic and antioxidant to maintain the normal functioning of nerve conduction,the heart,and the gastrointestinal tract.This study reports on an integrated eight-step continuous-flow synthesis of vitamin B_(1) from commercially available 2-cyanoacetamide.The proposed continuous-flow process is based on advances in chemistry,engineering,and equipment design,and affords improved performance and safety compared with batch-mode manufacturing.Several challenges were precisely investigated and controlled,including mixing,unexpected clogging,solvent switches,an exothermic reaction,and the prevention of side reactions,using various micro-channel flow reactors,mixers,separators,and continuous filters.Vitamin B_(1) was produced with a separated yield of 47.7% and high purity,with a total residence time of about 3.5 h.This eight-step continuous-flow protocol enables technology involving up to six of the key principles of green chemistry.Hence,the application of flow technology is of paramount importance for improving security,reducing waste,and,in particular,improving the efficiency of batch operations that require several days for manufacturing.展开更多
In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special fun...In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents.展开更多
Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing counte...Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry.展开更多
Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainl...Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).展开更多
The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing rese...The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%.展开更多
Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quan...Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.展开更多
Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roastin...Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.展开更多
Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.I...Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test.展开更多
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an...Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients.展开更多
The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development o...The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development of lithium metal batteries.Herein,a separator complexion consisting of polyacrylonitrile(PAN)nanofiber and MIL-101(Cr)particles prepared by electrospinning is proposed to bind the anions from the electrolyte utilizing abundant effective open metal sites in the MIL-101(Cr)particles to modulate the transport of non-effective carriers.The binding effect of the PANM separator promotes uniform lithium metal deposition and enhances the stability of the SEI layer and long cycling stability of ultra-high nickel layered oxide cathodes.Taking PANM as the Li||NCM96 separator enables high-voltage cycling stability,maintaining 72%capacity retention after 800 cycles at a charging and discharging rate of 0.2 C at a cut-off voltage of 4.5 V and 0°C.Meanwhile,the excellent high-rate performance delivers a specific capacity of 156.3 mA h g^(-1) at 10 C.In addition,outstanding cycling performance is realized from−20 to 60°C.The separator engineering facilitates the electrochemical performance of lithium metal batteries and enlightens a facile and promising strategy to develop fast charge/discharge over a wide range of temperatures.展开更多
文摘Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicine in the management of cancer,associated with a lower risk of recur-rence and increased survival.Several avenues of research demonstrate reduction in growth,proliferation,and increased apoptosis of cancer cells,including breast,prostate,colorectal,and lung cancer,when cultured by serum collected after exercise in vitro(i.e.,the cultivation of cancer cell lines in an experimental setting,which simplifies the biological system and provides mechanistic insight into cell responses).The underlying mechanisms of exercise-induced cancer suppressive effects may be attributed to the alteration in circulating factors,such as skeletal muscle-induced cytokines(i.e.,myokines)and hormones.However,exercise-induced tumor suppressive effects and detailed information about training interventions are not well investigated,constraining more precise application of exercise medicine within clinical oncology.To date,it remains unclear what role different training modes(i.e.,resistance and aerobic training)as well as volume and intensity have on exercise-condi-tioned serum and its effects on cancer cells.Nevertheless,the available evidence is that a single bout of aerobic training at moderate to vigorous intensity has cancer suppressive effects,while for chronic training interventions,exercise volume appears to be an influential candidate driving cancer inhibitory effects regardless of training mode.Insights for future research investigating training modes,volume and intensity are provided to further our understanding of the effects of exercise-conditioned serum on cancer cells.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005and Zhejiang Medical Technology Project,No.2022RC009.
文摘Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.
基金supported by National Natural Science Foundation of China under Grant 62174132the Fundamental Research Funds for Central Universities under Grant xzy022022060.
文摘A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-forward equal-izer(FFE)is employed in the quarter-rate transmitter(TX).The half-rate receiver(RX)incorporates a continuous-time linear equal-izer(CTLE),a 3-stage high-speed slicer with multi-clock-phase sampling,and a clock and data recovery(CDR).The experimen-tal results show that the TRx operates at a maximum speed of 56 Gb/s with chip-on board(COB)assembly.The 28 Gb/s NRZ eye diagram shows a far-end vertical eye opening of 210 mV with an output amplitude of 351 mV single-ended and the 56 Gb/s PAM-4 eye diagram exhibits far-end eye opening of 33 mV(upper-eye),31 mV(mid-eye),and 28 mV(lower-eye)with an output amplitude of 353 mV single-ended.The recovered 14 GHz clock from the RX exhibits random jitter(RJ)of 469 fs and deterministic jitter(DJ)of 8.76 ps.The 875 Mb/s de-multiplexed data features 593 ps horizontal eye opening with 32.02 ps RJ,at bit-error rate(BER)of 10-5(0.53 UI).The power dissipation of TX and RX are 125 and 181.4 mW,respectively,from a 0.9-V sup-ply.
基金partially funded with Ferrero 3P projectsupported by the European Union under the European Regional Development Fund(part of the Union’s response to the COVID-19 outbreak,AXIS VI—Investment Priority 13i—Action 3.1.1)。
文摘Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation.Among these,Q-2(named after quebracho extract and EOC blend 2,composed of carvacrol,thymol,and eugenol)and C-10(chestnut extract and EOC blend 10,consisting of oregano and thyme essential oils and limonene)have been investigated in detail in the present study with the semi-continuous rumen simulation technique(Rusitec)in three independent runs.For this purpose,Q-2 and C-10,dosed according to the previous study,were compared with a non-supplemented diet(negative control,NC)and with one supplemented with the commercial EOC-based Agolin^(R) Ruminant(positive control,PC).Results From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH,ammonia,protozoa count,and gas composition.Feed residues were collected for the determination of ruminal degradability.On d 10,samples of incubation liquid were also characterised for bacterial,archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons.Regardless of the duration of the fermentation period,Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia(-37%by Q-2,-34%by PC)or methane formation(-12%by C-10,-12%by PC).The PC was also responsible for lower feed degradability and bacterial and fungal richness,whereas Q-2 and C-10 effects,particularly on microbiome diversities,were limited compared to NC.Conclusions All additives showed the potential to mitigate methane or ammonia formation,or both,in vitro over a period of 10 d.However,several differences occurred between PC and Q-2/C-10,indicating different mechanisms of action.The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects.Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties,their mechanisms of action remain mostly to be elucidated.
基金National Natural Science Foundation of China(Grant No.22005275)to provide fund for conducting experiments.
文摘In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.
基金the financial supports from Program for the Supported by the Innovative Talents Support Program of Higher Education Institutions in Shanxi Provincethe‘Shanxi Province’s Key Core Technology and Common Technology Research And Development Special Project’(2020XXX015)Special Project for Scientific and Technological Cooperation and Exchange in Shanxi Province(regional cooperation project):Key Technologies for flexible manufacturing of high-strength heat-resistant magnesium alloy cabin components(202104041101033)。
文摘This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component.
基金Project supported by the NSAF(Grant No.U1930201)the National Natural Science Foundation of China(Grant Nos.12274331,91836101,and 91836302)+1 种基金the National Key R&D Program of China(Grant No.2018YFA0306504)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).
文摘Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.
基金supported by the National Natural Science Foundation of China(No.52274319)。
文摘Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.
基金supported by the Fundamental Research Funds for the Central Universities.
文摘Vitamin B_(1) is widely applied in the healthcare and food industry as an antineuritic and antioxidant to maintain the normal functioning of nerve conduction,the heart,and the gastrointestinal tract.This study reports on an integrated eight-step continuous-flow synthesis of vitamin B_(1) from commercially available 2-cyanoacetamide.The proposed continuous-flow process is based on advances in chemistry,engineering,and equipment design,and affords improved performance and safety compared with batch-mode manufacturing.Several challenges were precisely investigated and controlled,including mixing,unexpected clogging,solvent switches,an exothermic reaction,and the prevention of side reactions,using various micro-channel flow reactors,mixers,separators,and continuous filters.Vitamin B_(1) was produced with a separated yield of 47.7% and high purity,with a total residence time of about 3.5 h.This eight-step continuous-flow protocol enables technology involving up to six of the key principles of green chemistry.Hence,the application of flow technology is of paramount importance for improving security,reducing waste,and,in particular,improving the efficiency of batch operations that require several days for manufacturing.
基金Supported by National Natural Science Foundation of China (Grant No.12302177)Guangdong Provincial Basic and Applied Basic Research Foundation of China (Grant No.2024A1515010203)+1 种基金Shenzhen Science and Technology Program of China (Grant No.JCYJ20230807093602005)Shenzhen Key Laboratory of Intelligent Manufacturing for Continuous Carbon Fibre Reinforced Composites of China (Grant No.ZDSYS20220527171404011)。
文摘In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents.
基金supported by National Natural Science Foundation of China(31901964)the Science and Technology Project of Hebei Education Department,China(BJK2022012)+3 种基金the Innovation Ability Training Project for Graduate Student of Hebei Province,China(CXZZBS2023071)the Introduced Talents Project of Hebei Agricultural University,China(YJ201904)the Key Research and Development Project of Hebei Province,China(21326308D-02-03)the Earmarked Fund for the China Agricultural Research System,China(CARS-27).
文摘Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry.
文摘Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).
基金supported in part by the Intelligent Policing and National Security Risk Management Laboratory 2023 Opening Project(No.ZHKFYB2304)the Fundamental Research Funds for the Central Universities(Nos.SCU2023D008,2023SCU12129)+2 种基金the Natural Science Foundation of Sichuan Province(No.2024NSFSC1449)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129)the Key Laboratory of Data Protection and Intelligent Management(Sichuan University),Ministry of Education.
文摘The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%.
基金supported by the NSF of Hebei Province(A2022208007)the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)。
文摘Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.
基金Project(52174384)supported by the National Natural Science Foundation of ChinaProject(LZB2021003)supported by Fundamental Research Funds for the Central Universities,China。
文摘Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.
基金the financial supports from the Science and Technology Special Project, China (No. K19168)the National Science and Technology Major Project of China (No. 2017-VI-0004-0075)the National Natural Science Foundation of China (No. 52231002)。
文摘Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test.
基金This work was financially supported by the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.32171399,32171456,and T2225010)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012261)the Science and Technology Program of Guangzhou,China(No.202103000076)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02),and Pazhou Lab,Guangzhou(No.PZL2021KF0003)FML would like to thank the National Natural Science Foundation of China(Nos.32171335 and 31900954)JL would like to thank the National Natural Science Foundation of China(No.62105380)the China Postdoctoral Science Foundation(No.2021M693686)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645).
文摘Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB2400300)the IPE Talent Start-up Program of Institute of Process Engineering of Chinese Academy of Sciences(Grant No.E0293507)。
文摘The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development of lithium metal batteries.Herein,a separator complexion consisting of polyacrylonitrile(PAN)nanofiber and MIL-101(Cr)particles prepared by electrospinning is proposed to bind the anions from the electrolyte utilizing abundant effective open metal sites in the MIL-101(Cr)particles to modulate the transport of non-effective carriers.The binding effect of the PANM separator promotes uniform lithium metal deposition and enhances the stability of the SEI layer and long cycling stability of ultra-high nickel layered oxide cathodes.Taking PANM as the Li||NCM96 separator enables high-voltage cycling stability,maintaining 72%capacity retention after 800 cycles at a charging and discharging rate of 0.2 C at a cut-off voltage of 4.5 V and 0°C.Meanwhile,the excellent high-rate performance delivers a specific capacity of 156.3 mA h g^(-1) at 10 C.In addition,outstanding cycling performance is realized from−20 to 60°C.The separator engineering facilitates the electrochemical performance of lithium metal batteries and enlightens a facile and promising strategy to develop fast charge/discharge over a wide range of temperatures.