Noise contours are used to describe the extent of airport noise pollution and to plan land use around airports. The L WECPN(weighted equivalent continuous perceive noise level) recommended by ICAO(International Civ...Noise contours are used to describe the extent of airport noise pollution and to plan land use around airports. The L WECPN(weighted equivalent continuous perceive noise level) recommended by ICAO(International Civil Aviation Organization) is adopted as airport noise rating parameter in this paper. With the help of various mathematical models in the software Surfer, noise contours can be drawn automatically by the completed program in Visual C++ Code. Corrections for thrust, velocity, atmospheric temperature, humidity and lateral ground attenuation are also considered in the new method, which can improve the efficiency of drawing contours. An example of its use for drawing noise contours of an airport in Zhejiang Province of China is proposed and the predictions and the measurements show agreements well.展开更多
Four distinct litho-tectonic belts (zones) in the Yinshan area, North China, were identified by pressure-temperature contours and litho-tectonic features, such as the Sanggan granulite belt, Jining metasedimentary bel...Four distinct litho-tectonic belts (zones) in the Yinshan area, North China, were identified by pressure-temperature contours and litho-tectonic features, such as the Sanggan granulite belt, Jining metasedimentary belt, Wulashan-Daqingshan front tectonic zone and Se' eratengshan belt. This area witnessed two important thermo-tectonic events. The older one is c. 2.5 Ga while the younger one c. 1.9 Ga. The Se' ertengshan Neoarchaean terrane features a clockwise PT path with the decompression ranging from > 1500 MPa to 800–1000 MPa in the Se' ertengshan belt, which implies an island arc setting. The Sanggan belt is a Mesoarchaean microcontinent reworked by Neoarchaean magma underplating, which shows an counterclockwise PT path. During the Palaeoproterozoic period, two Archaean continent (arc) collided. The Archaean basement of the Sanggan and Wulashan-Daqingshan belts overthrust northwards, the PTt paths of basement show a decompression from 1000–1200 MPa to 500–700 MPa. The PT paths of the Jining and Erdaowa Groups show different PTt paths: the former shows counterclockwise while the latter clockwise, which indicates that the Jining and Erdaowa groups formed in different thermo-tectonic settings.展开更多
A new method for constructing contours from complicated terrain elevation grids containing invalid data is put forward. By using this method, the topological consistency of contours in groups can be maintained effecti...A new method for constructing contours from complicated terrain elevation grids containing invalid data is put forward. By using this method, the topological consistency of contours in groups can be maintained effectively and the contours can be drawn smoothly based on boundaries pre-searching and local correction. An experimental example is given to demonstrate that the contours constructed by this method are of good quality.展开更多
MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, in...MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.展开更多
Rising sea levels due to global warming and climate change impact may prove a disaster for small islands. Accurate DEM (digital elevation model) can help to understand SLR (sea level rise) impact, coastal zones fl...Rising sea levels due to global warming and climate change impact may prove a disaster for small islands. Accurate DEM (digital elevation model) can help to understand SLR (sea level rise) impact, coastal zones flooding risks assessment and hydrological attributes modeling and extraction. Currently, DEMs are available from several different sources using active and passive remote sensing systems. This research compares absolute surface heights accuracies retrieved from three independent DEMs datasets. The Shuttle Radar Topographic Mission (SRTM-V4.1) and the Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER-V2.1) with 30-m pixel size, and a DEM-5 of 5-m spatial resolution generated from high topographic contour lines map at scale of 1:5,000 using simple Kriging interpolation method. Moreover, topographic attributes (slope and aspect) have been retrieved and compared. For the elevations validation purposes, a dataset of 400 GCPs uniformly distributed over the study site were used. These were measured using a DGPS assuring ± 1 and ± 2 cm accuracies, respectively, for planimerry and altimetry. The obtained results show that globally the landscape scale plays an important role in the selection of the DEM pixel size, which must reflect the real topographic attributes. Indeed, the derived DEM-5 from high topographic contours map (1:5,000) using simple Kriging exhibit the best accuracy of ±0.65 m which is less than the tolerance or the total error (±0.78 m) calculated based on errors sources propagation. Then, the results show an accuracy of ± 3.00 m for SRTM-V4.1 which is less than the absolute vertical height accuracy (±5.6 m) advocated by NASA for African continent and Middle-East regions. As well, the achieved ASTER accuracy was ± 8.40 m compared to the estimated error (±17.01 m) by USGS and JAXA. Obviously, high spatial resolution and accurate DEM-5 is a crucial requirement to simulate and evaluate costal zones inundation under different SLR and storm flow scenarios for small islands. Decidedly, the elevation of small islands with topographic features not higher than 134 m can be estimated using SRTM-V4.1 with relatively acceptable accuracy. Whereas, this DEM is not significantly consistent for accurate SLR scenarios simulations. Without doubt, ASTER-V2.1 DEM was an excellent alternative compared to SRTM with 90-m pixel size, but actually with SRTM-V4.1 full resolution (30-m) ASTER-V2.1 will likely see its limited uses in geosciences applications. Indeed, ASTER is not providing accurate information to simulate the impact of SLR scenarios on small islands.展开更多
In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model ca...In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model capable of significantly improving the image segmentation performance especially for complex object shape, by seamlessly integrating gradient vector flow and prior directional information. Since the prior directional information is provided by manual line drawing, it can be inconvenient for inexperienced users who might have difficulty in finding the best place to draw the directional lines to achieve the best segmentation performance. This paper describes a method to overcome this problem by automatically extracting centerlines to guide the users for providing the right directional information. Experimental results on synthetic and real images demonstrate the feasibility of the proposed method.展开更多
This paper explores brain CT slices segmentation technique and some related problems, including contours segmentation algorithms, edge detector, algorithm evaluation and experimental results. This article describes a ...This paper explores brain CT slices segmentation technique and some related problems, including contours segmentation algorithms, edge detector, algorithm evaluation and experimental results. This article describes a method for contour-based segmentation of anatomical structures in 3D medical data sets. With this method, the user manually traces one or more 2D contours of an anatomical structure of interest on parallel planes arbitrarily cutting the data set. The experimental results showes the segmentation based on 3D brain volume and 2D CT slices. The main creative contributions in this paper are: (1) contours segmentation algorithm; (2) edge detector; (3) algorithm evaluation.展开更多
Three dimensional digitization of human head is desired in many applications. In this paper, an information fusion based scheme is presented to obtain 3-D information of human head. Structured light technology is empl...Three dimensional digitization of human head is desired in many applications. In this paper, an information fusion based scheme is presented to obtain 3-D information of human head. Structured light technology is employed to measure depth. For the special reflection areas,in which the structured light stripe can not be detected directly, the shape of the structured light stripe can be calculated from the corresponding contour. By fusing the information of structured light and the contours, the problem of reflectance influence is solved, and the whole shape of head,including hair area, can be obtained. Some good results are obtained.展开更多
Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is ani...Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is anisotropic since it only keeps the diffusion along the normal direction of the isophotes; however, it has difficulties forcing a snake into long, thin boundary indentations. In this paper, a novel external force for active contours called normally generalized gradient vector flow (NGGVF) is proposed, which generalizes the NGVF formulation to include two spatially varying weighting functions. Consequently, the proposed NGGVF snake is anisotropic and would improve ac- tive contour convergence into long, thin boundary indentations while maintaining other desirable properties of the NGVF snake, such as enlarged capture range, initialization insensitivity and good convergence at concavities. The advantages on synthetic and real images are demonstrated.展开更多
Contour is an important pattern descriptor in image processing and particularly in region description, registration and length estimation. In many applications where contour is used, a good segmentation and an efficie...Contour is an important pattern descriptor in image processing and particularly in region description, registration and length estimation. In many applications where contour is used, a good segmentation and an efficient smoothing method are needed. In X-ray images, such as mammograms, where object edge is not clearly discernible, estimating the object’s contour may yield substantial shift along the boundary due to noise or segmentation drawbacks. An appropriate smoothing is therefore required to reduce these effects. In this paper, an approach based on local adaptive threshold segmentation to extract contour and a new smoothing approach founded on Fourier descriptors are introduced. The experimental results of extraction obtained from a set of mammograms and compared with the breast regions delineated by radiologists yielded a percent overlap area of 98.7% ± 0.9% with false positive and negative rates of 0.36 ± 0.74 and 0.93 ± 0.44 respectively. The proposed method was tested on a set of images and improved the accuracy, leading to an average error of less than one pixel.展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
Moving object segmentation is one of the most challenging issues in computer vision. In this paper, we propose a new algorithm for static camera foreground segmentation. It combines Gaussian mixture model (GMM) and ...Moving object segmentation is one of the most challenging issues in computer vision. In this paper, we propose a new algorithm for static camera foreground segmentation. It combines Gaussian mixture model (GMM) and active contours method, and produces much better results than conventional background subtraction methods. It formulates foreground segmentation as an energy minimization problem and minimizes the energy function using curve evolution method. Our algorithm integrates the GMM background model, shadow elimination term and curve evolution edge stopping term into energy function. It achieves more accurate segmentation than existing methods of the same type. Promising results on real images demonstrate the potential of the presented method.展开更多
The performance of a water jet propulsion system is related to the inlet duct,rotor,stator,and nozzle.Generally,the flow inlet design must fit the bottom line of the hull,and the design of the inlet duct is often limi...The performance of a water jet propulsion system is related to the inlet duct,rotor,stator,and nozzle.Generally,the flow inlet design must fit the bottom line of the hull,and the design of the inlet duct is often limited by stern space.The entire section,from the rotor to the nozzle through the stator,must be designed based on system integration in that the individual performance of these three components will influence each other.Particularly,the section from the rotor to the nozzle significantly impacts the performance of a water jet propulsion system.This study focused on nozzle design and established referable analysis results to facilitate subsequent integrated studies on the design parameters regarding nozzle contour.Most existing studies concentrate on discussions on rotor design and the tip leakage flow of rotors or have replaced the existing complex computational domain with a simple flow field.However,research has yet to implement an integrated,optimal design of the section from the rotor to the nozzle.Given the above,our program conducted preliminary research on this system integration design issue,discussed the optimal nozzle for this section in-depth,and proposed design suggestions based on the findings.This program used an existing model as the design case.This study referred to the actual trial data as the design conditions for the proposed model.Unlike prior references’simple flow field form,this study added a jet ski geometry and free surface to the computational domain.After the linear hull shape was considered,the inflow in the inlet duct would be closer to the actual condition.Based on the numerical calculation result,this study recommends that the optimal nozzle outlet area should be 37%of the inlet area and that the nozzle contour should be linear.Furthermore,for the pump head,static pressure had a more significant impact than dynamic pressure.展开更多
This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC)....This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC).This method innovatively combines contour edge tracking with affinity propagation(AP)clustering for peak detection in GC×GC fingerprints,the first in this field.Contour edge tracking signif-icantly reduces false positives caused by“burr”signals,while AP clustering enhances detection accuracy in the face of false negatives.The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin.PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples.Furthermore,this algorithm compares the GC×GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins.The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues.Each sample exhibits unique characteristic components alongside common ones,and vari-ations in content may influence their therapeutic effectiveness.This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional(2D)fingerprint analysis of GC×GC data.展开更多
This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and inte...This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and integration.This novel method and other four existing methods of calculating CPA were compared using detailed crown radius measurements from 30 tall trees of Eucalyptus pilularis variable in crown size,shape,and asymmetry.The four existing methods included the polygonal approach and three ways of calculating CPA as the area of a circle using the arithmetic,geometric and quadratic mean radius.Comparisons were made across a sequence of eight non-consecutive numbers(from 2 to 16)of measured crown radii for each tree over the range of crown asymmetry of the 30 trees through generalized linear models and multiple comparisons of means.The sequence covered the range of the number of crown radii measured for calculating the CPA of a tree in the literature.A crown asymmetry index within the unit interval was calculated for each tree to serve as a normative measure.With a slight overestimation of 2.2%on average and an overall mean error size of 7.9%across the numbers of crown radii that were compared,our new method was the least biased and most accurate.Calculating CPA as a circle using the quadratic mean crown radius was the second best,which had an average overestimation of 4.5%and overall mean error size of 8.8%.These two methods remained by and large unbiased as crown asymmetry increased,while the other three methods showed larger bias of underestimation.For the conventional method of using the arithmetic mean crown radius to calculate CPA as a circle,bias correction factors were developed as a function of crown asymmetry index to delineate the increasing magnitude of bias associated with greater degrees of crown asymmetry.This study reveals and demonstrates such relationships between the accuracy of CPA calculations and crown asymmetry and will help increase awareness among researchers and practitioners on the existence of bias in their CPA calculations and for the need to use an unbiased method in the future.Our new method is recommended for calculating CPA where at least four crown radius measurements per tree are available because that is the minimum number required for its use.展开更多
In this paper,we establish a new multivariate Hermite sampling series involving samples from the function itself and its mixed and non-mixed partial derivatives of arbitrary order.This multivariate form of Hermite sam...In this paper,we establish a new multivariate Hermite sampling series involving samples from the function itself and its mixed and non-mixed partial derivatives of arbitrary order.This multivariate form of Hermite sampling will be valid for some classes of multivariate entire functions,satisfying certain growth conditions.We will show that many known results included in Commun Korean Math Soc,2002,17:731-740,Turk J Math,2017,41:387-403 and Filomat,2020,34:3339-3347 are special cases of our results.Moreover,we estimate the truncation error of this sampling based on localized sampling without decay assumption.Illustrative examples are also presented.展开更多
[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The str...[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The structural design information of all waist protection equipment was collected from the national Internet platform,and the data were classified and a database was established.IBM SPSS 26.0 and MATLAB 2018a were used to analyze the data and tabulate them in Tableau 2022.4.After the association rules were clarified,the data were imported into Cinema 4D R21 to create the concept contour of waist protection pillow.[Results]The average and standard deviation of the single airbag design were the highest in all groups,with an average of 0.511 and a standard deviation of 0.502.The average and standard deviation of the upper and lower dual airbags were the lowest in all groups,with an average of 0.015 and a standard deviation of 0.120;the correlation coefficient between single airbag and 120°arc stretching was 0.325,which was positively correlated with each other(P<0.01);the correlation coefficient between multiple airbags and 360°encircling fitting was 0.501,which was positively correlated with each other and had the highest correlation degree(P<0.01).[Conclusions]The single airbag design is well recognized by companies,and has received the highest attention among all brand products.While focusing on single airbag design,most brands will consider the need to add 120°arc stretching elements in product design.At the time of focusing on multiple airbag design,some brands believe that 360°encircling fitting elements need to be added to the product,and the correlation between the two is the highest among all groups.展开更多
The strategy of modeling the control mechanism for generating F0 contour of speech signal is studied in this paper. Based on some dynamic characteristics of vocal cord strain, the complex laryngeal mechanism relative ...The strategy of modeling the control mechanism for generating F0 contour of speech signal is studied in this paper. Based on some dynamic characteristics of vocal cord strain, the complex laryngeal mechanism relative to local F0 regulation is simplified to be a feasible physical model. Furthermore, a model function is deduced as the control mechanism for the generation process of local rise-fall patterns, and two kinds of basic feature patterns result with so called rise-fall commands defined by model parameters. on the logarithmic scale of F0 versus time the local characteristics of an F0 contour are approximated by the sum of these patterns generated by appropriate commands. The experimenial results in analyzing and synthesizing the F0 contours of spoken Chinese utterances indicate that the observed F0 contours can be always approximated well by the model, and a good correlation exists between some model parameters and the transition duration of local F0 rising or falling. The model lays a foundation for Chinese F0 contour synthesis by rule.展开更多
文摘Noise contours are used to describe the extent of airport noise pollution and to plan land use around airports. The L WECPN(weighted equivalent continuous perceive noise level) recommended by ICAO(International Civil Aviation Organization) is adopted as airport noise rating parameter in this paper. With the help of various mathematical models in the software Surfer, noise contours can be drawn automatically by the completed program in Visual C++ Code. Corrections for thrust, velocity, atmospheric temperature, humidity and lateral ground attenuation are also considered in the new method, which can improve the efficiency of drawing contours. An example of its use for drawing noise contours of an airport in Zhejiang Province of China is proposed and the predictions and the measurements show agreements well.
文摘Four distinct litho-tectonic belts (zones) in the Yinshan area, North China, were identified by pressure-temperature contours and litho-tectonic features, such as the Sanggan granulite belt, Jining metasedimentary belt, Wulashan-Daqingshan front tectonic zone and Se' eratengshan belt. This area witnessed two important thermo-tectonic events. The older one is c. 2.5 Ga while the younger one c. 1.9 Ga. The Se' ertengshan Neoarchaean terrane features a clockwise PT path with the decompression ranging from > 1500 MPa to 800–1000 MPa in the Se' ertengshan belt, which implies an island arc setting. The Sanggan belt is a Mesoarchaean microcontinent reworked by Neoarchaean magma underplating, which shows an counterclockwise PT path. During the Palaeoproterozoic period, two Archaean continent (arc) collided. The Archaean basement of the Sanggan and Wulashan-Daqingshan belts overthrust northwards, the PTt paths of basement show a decompression from 1000–1200 MPa to 500–700 MPa. The PT paths of the Jining and Erdaowa Groups show different PTt paths: the former shows counterclockwise while the latter clockwise, which indicates that the Jining and Erdaowa groups formed in different thermo-tectonic settings.
文摘A new method for constructing contours from complicated terrain elevation grids containing invalid data is put forward. By using this method, the topological consistency of contours in groups can be maintained effectively and the contours can be drawn smoothly based on boundaries pre-searching and local correction. An experimental example is given to demonstrate that the contours constructed by this method are of good quality.
文摘MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.
文摘Rising sea levels due to global warming and climate change impact may prove a disaster for small islands. Accurate DEM (digital elevation model) can help to understand SLR (sea level rise) impact, coastal zones flooding risks assessment and hydrological attributes modeling and extraction. Currently, DEMs are available from several different sources using active and passive remote sensing systems. This research compares absolute surface heights accuracies retrieved from three independent DEMs datasets. The Shuttle Radar Topographic Mission (SRTM-V4.1) and the Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER-V2.1) with 30-m pixel size, and a DEM-5 of 5-m spatial resolution generated from high topographic contour lines map at scale of 1:5,000 using simple Kriging interpolation method. Moreover, topographic attributes (slope and aspect) have been retrieved and compared. For the elevations validation purposes, a dataset of 400 GCPs uniformly distributed over the study site were used. These were measured using a DGPS assuring ± 1 and ± 2 cm accuracies, respectively, for planimerry and altimetry. The obtained results show that globally the landscape scale plays an important role in the selection of the DEM pixel size, which must reflect the real topographic attributes. Indeed, the derived DEM-5 from high topographic contours map (1:5,000) using simple Kriging exhibit the best accuracy of ±0.65 m which is less than the tolerance or the total error (±0.78 m) calculated based on errors sources propagation. Then, the results show an accuracy of ± 3.00 m for SRTM-V4.1 which is less than the absolute vertical height accuracy (±5.6 m) advocated by NASA for African continent and Middle-East regions. As well, the achieved ASTER accuracy was ± 8.40 m compared to the estimated error (±17.01 m) by USGS and JAXA. Obviously, high spatial resolution and accurate DEM-5 is a crucial requirement to simulate and evaluate costal zones inundation under different SLR and storm flow scenarios for small islands. Decidedly, the elevation of small islands with topographic features not higher than 134 m can be estimated using SRTM-V4.1 with relatively acceptable accuracy. Whereas, this DEM is not significantly consistent for accurate SLR scenarios simulations. Without doubt, ASTER-V2.1 DEM was an excellent alternative compared to SRTM with 90-m pixel size, but actually with SRTM-V4.1 full resolution (30-m) ASTER-V2.1 will likely see its limited uses in geosciences applications. Indeed, ASTER is not providing accurate information to simulate the impact of SLR scenarios on small islands.
文摘In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model capable of significantly improving the image segmentation performance especially for complex object shape, by seamlessly integrating gradient vector flow and prior directional information. Since the prior directional information is provided by manual line drawing, it can be inconvenient for inexperienced users who might have difficulty in finding the best place to draw the directional lines to achieve the best segmentation performance. This paper describes a method to overcome this problem by automatically extracting centerlines to guide the users for providing the right directional information. Experimental results on synthetic and real images demonstrate the feasibility of the proposed method.
文摘This paper explores brain CT slices segmentation technique and some related problems, including contours segmentation algorithms, edge detector, algorithm evaluation and experimental results. This article describes a method for contour-based segmentation of anatomical structures in 3D medical data sets. With this method, the user manually traces one or more 2D contours of an anatomical structure of interest on parallel planes arbitrarily cutting the data set. The experimental results showes the segmentation based on 3D brain volume and 2D CT slices. The main creative contributions in this paper are: (1) contours segmentation algorithm; (2) edge detector; (3) algorithm evaluation.
基金Supported by the National Natural Science Foundation of China(69775022) and 863 Programme of China(863-306-ZT04-06-3)
文摘Three dimensional digitization of human head is desired in many applications. In this paper, an information fusion based scheme is presented to obtain 3-D information of human head. Structured light technology is employed to measure depth. For the special reflection areas,in which the structured light stripe can not be detected directly, the shape of the structured light stripe can be calculated from the corresponding contour. By fusing the information of structured light and the contours, the problem of reflectance influence is solved, and the whole shape of head,including hair area, can be obtained. Some good results are obtained.
基金Supported by the National Natural Science Foundation of China(60805004)the State Key Lab of Space Medicine Fundamen-tals and Application(SMFA09A16)
文摘Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is anisotropic since it only keeps the diffusion along the normal direction of the isophotes; however, it has difficulties forcing a snake into long, thin boundary indentations. In this paper, a novel external force for active contours called normally generalized gradient vector flow (NGGVF) is proposed, which generalizes the NGVF formulation to include two spatially varying weighting functions. Consequently, the proposed NGGVF snake is anisotropic and would improve ac- tive contour convergence into long, thin boundary indentations while maintaining other desirable properties of the NGVF snake, such as enlarged capture range, initialization insensitivity and good convergence at concavities. The advantages on synthetic and real images are demonstrated.
文摘Contour is an important pattern descriptor in image processing and particularly in region description, registration and length estimation. In many applications where contour is used, a good segmentation and an efficient smoothing method are needed. In X-ray images, such as mammograms, where object edge is not clearly discernible, estimating the object’s contour may yield substantial shift along the boundary due to noise or segmentation drawbacks. An appropriate smoothing is therefore required to reduce these effects. In this paper, an approach based on local adaptive threshold segmentation to extract contour and a new smoothing approach founded on Fourier descriptors are introduced. The experimental results of extraction obtained from a set of mammograms and compared with the breast regions delineated by radiologists yielded a percent overlap area of 98.7% ± 0.9% with false positive and negative rates of 0.36 ± 0.74 and 0.93 ± 0.44 respectively. The proposed method was tested on a set of images and improved the accuracy, leading to an average error of less than one pixel.
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
基金Supported by National Basic Research Program of China (Grant No.2006CB303105)the Chinese Ministry of Education Innovation Team Fund Project (Grant No.IRT0707)+3 种基金the National Natural Science Foundation of China (Grant Nos.60673109 and 60801053)Beijing Excellent Doctoral Thesis Program (Grant No. YB20081000401)Beijing Municipal Natural Science Foundation (Grant No.4082025)Doctoral Foundation of China (Grant No.20070004037)
文摘Moving object segmentation is one of the most challenging issues in computer vision. In this paper, we propose a new algorithm for static camera foreground segmentation. It combines Gaussian mixture model (GMM) and active contours method, and produces much better results than conventional background subtraction methods. It formulates foreground segmentation as an energy minimization problem and minimizes the energy function using curve evolution method. Our algorithm integrates the GMM background model, shadow elimination term and curve evolution edge stopping term into energy function. It achieves more accurate segmentation than existing methods of the same type. Promising results on real images demonstrate the potential of the presented method.
基金the financial support from the National Science and Technology Council,Taiwan(Grant No.MOST 111-2221-E-019-035-).
文摘The performance of a water jet propulsion system is related to the inlet duct,rotor,stator,and nozzle.Generally,the flow inlet design must fit the bottom line of the hull,and the design of the inlet duct is often limited by stern space.The entire section,from the rotor to the nozzle through the stator,must be designed based on system integration in that the individual performance of these three components will influence each other.Particularly,the section from the rotor to the nozzle significantly impacts the performance of a water jet propulsion system.This study focused on nozzle design and established referable analysis results to facilitate subsequent integrated studies on the design parameters regarding nozzle contour.Most existing studies concentrate on discussions on rotor design and the tip leakage flow of rotors or have replaced the existing complex computational domain with a simple flow field.However,research has yet to implement an integrated,optimal design of the section from the rotor to the nozzle.Given the above,our program conducted preliminary research on this system integration design issue,discussed the optimal nozzle for this section in-depth,and proposed design suggestions based on the findings.This program used an existing model as the design case.This study referred to the actual trial data as the design conditions for the proposed model.Unlike prior references’simple flow field form,this study added a jet ski geometry and free surface to the computational domain.After the linear hull shape was considered,the inflow in the inlet duct would be closer to the actual condition.Based on the numerical calculation result,this study recommends that the optimal nozzle outlet area should be 37%of the inlet area and that the nozzle contour should be linear.Furthermore,for the pump head,static pressure had a more significant impact than dynamic pressure.
基金supported by Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource Utilization,Hunan Province Natural Science Fund,China(Grant Nos.:2020JJ4569,2023JJ60378)Hunan Province College Students'Innovation and Entrepreneurship Training Program,China(Grant Nos.:S202110530044,S202210530048).
文摘This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC).This method innovatively combines contour edge tracking with affinity propagation(AP)clustering for peak detection in GC×GC fingerprints,the first in this field.Contour edge tracking signif-icantly reduces false positives caused by“burr”signals,while AP clustering enhances detection accuracy in the face of false negatives.The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin.PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples.Furthermore,this algorithm compares the GC×GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins.The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues.Each sample exhibits unique characteristic components alongside common ones,and vari-ations in content may influence their therapeutic effectiveness.This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional(2D)fingerprint analysis of GC×GC data.
基金supported by the Natural Science Foundation of China (32071758)the Fundamental Research Funds for the Central Universities of China (No. 2572020BA01)
文摘This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and integration.This novel method and other four existing methods of calculating CPA were compared using detailed crown radius measurements from 30 tall trees of Eucalyptus pilularis variable in crown size,shape,and asymmetry.The four existing methods included the polygonal approach and three ways of calculating CPA as the area of a circle using the arithmetic,geometric and quadratic mean radius.Comparisons were made across a sequence of eight non-consecutive numbers(from 2 to 16)of measured crown radii for each tree over the range of crown asymmetry of the 30 trees through generalized linear models and multiple comparisons of means.The sequence covered the range of the number of crown radii measured for calculating the CPA of a tree in the literature.A crown asymmetry index within the unit interval was calculated for each tree to serve as a normative measure.With a slight overestimation of 2.2%on average and an overall mean error size of 7.9%across the numbers of crown radii that were compared,our new method was the least biased and most accurate.Calculating CPA as a circle using the quadratic mean crown radius was the second best,which had an average overestimation of 4.5%and overall mean error size of 8.8%.These two methods remained by and large unbiased as crown asymmetry increased,while the other three methods showed larger bias of underestimation.For the conventional method of using the arithmetic mean crown radius to calculate CPA as a circle,bias correction factors were developed as a function of crown asymmetry index to delineate the increasing magnitude of bias associated with greater degrees of crown asymmetry.This study reveals and demonstrates such relationships between the accuracy of CPA calculations and crown asymmetry and will help increase awareness among researchers and practitioners on the existence of bias in their CPA calculations and for the need to use an unbiased method in the future.Our new method is recommended for calculating CPA where at least four crown radius measurements per tree are available because that is the minimum number required for its use.
文摘In this paper,we establish a new multivariate Hermite sampling series involving samples from the function itself and its mixed and non-mixed partial derivatives of arbitrary order.This multivariate form of Hermite sampling will be valid for some classes of multivariate entire functions,satisfying certain growth conditions.We will show that many known results included in Commun Korean Math Soc,2002,17:731-740,Turk J Math,2017,41:387-403 and Filomat,2020,34:3339-3347 are special cases of our results.Moreover,we estimate the truncation error of this sampling based on localized sampling without decay assumption.Illustrative examples are also presented.
基金Supported by Municipal Public Welfare Science and Technology Project of Zhoushan Science and Technology Bureau,Zhejiang Province(2021C31064).
文摘[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The structural design information of all waist protection equipment was collected from the national Internet platform,and the data were classified and a database was established.IBM SPSS 26.0 and MATLAB 2018a were used to analyze the data and tabulate them in Tableau 2022.4.After the association rules were clarified,the data were imported into Cinema 4D R21 to create the concept contour of waist protection pillow.[Results]The average and standard deviation of the single airbag design were the highest in all groups,with an average of 0.511 and a standard deviation of 0.502.The average and standard deviation of the upper and lower dual airbags were the lowest in all groups,with an average of 0.015 and a standard deviation of 0.120;the correlation coefficient between single airbag and 120°arc stretching was 0.325,which was positively correlated with each other(P<0.01);the correlation coefficient between multiple airbags and 360°encircling fitting was 0.501,which was positively correlated with each other and had the highest correlation degree(P<0.01).[Conclusions]The single airbag design is well recognized by companies,and has received the highest attention among all brand products.While focusing on single airbag design,most brands will consider the need to add 120°arc stretching elements in product design.At the time of focusing on multiple airbag design,some brands believe that 360°encircling fitting elements need to be added to the product,and the correlation between the two is the highest among all groups.
文摘The strategy of modeling the control mechanism for generating F0 contour of speech signal is studied in this paper. Based on some dynamic characteristics of vocal cord strain, the complex laryngeal mechanism relative to local F0 regulation is simplified to be a feasible physical model. Furthermore, a model function is deduced as the control mechanism for the generation process of local rise-fall patterns, and two kinds of basic feature patterns result with so called rise-fall commands defined by model parameters. on the logarithmic scale of F0 versus time the local characteristics of an F0 contour are approximated by the sum of these patterns generated by appropriate commands. The experimenial results in analyzing and synthesizing the F0 contours of spoken Chinese utterances indicate that the observed F0 contours can be always approximated well by the model, and a good correlation exists between some model parameters and the transition duration of local F0 rising or falling. The model lays a foundation for Chinese F0 contour synthesis by rule.