AIM:To compare the visual perception(color and chromatic-achromatic contrast vision)of a small cohort of COVID-19 patients at the time of infection and after 6mo with that of a healthy population matched for sex and a...AIM:To compare the visual perception(color and chromatic-achromatic contrast vision)of a small cohort of COVID-19 patients at the time of infection and after 6mo with that of a healthy population matched for sex and age.METHODS:A total of 25 patients(9 females,16 males,mean age:54±10y)with COVID-19 hospitalized in the COVID-19 Unit of the University Clinical Hospital of Valladolid were recruited for this preliminary study.Visual perception,as determined by monocular measurement of contrast sensitivity function(CSF)and color vision was assessed in each patient using the Optopad test.The results obtained were then compared with those of a sample of 16 age-and sex-matched healthy controls(5 females,11 males,mean age:50±6y)in which the same measurement procedure was repeated.Statistically significant differences between groups were assessed using the Mann-Whitney U test.Measurements were repeated after a minimum follow-up period of 6mo and statistically significant differences between the two time points in each group were assessed using the Wilcoxon signed rank test.RESULTS:Discrimination thresholds(color and chromatic-achromatic contrast vision)and their corresponding sensitivity,calculated as the inverse of the discrimination threshold,were evaluated.Analysis of the data revealed higher contrast threshold results(i.e.,worse contrast sensitivity)in the COVID-19 group than in the control group for all spatial frequencies studied in the Optopad-CSF achromatic test and most of the spatial frequencies studied in the Optopad-CSF chromatic test for the red-green and blue-yellow mechanisms.In addition,color threshold results in the COVID-19 group were also significantly higher(i.e.,worse color sensitivity)for almost all color mechanisms studied in the Optopad-Color test.At 6mo,most of the differences found between the groups were maintained despite COVID-19 recovery.CONCLUSION:The present results provide preliminary evidence that visual perception may be impaired in COVID-19,even when the infection has passed.Although further research is needed to determine the precise causes of this finding,analysis of CSF and color vision could provide valuable information on the visual impact of COVID-19.展开更多
Runway detection is a demanding task for autonomous landing of unmanned aerial vehicles. Inspired by the attenuation effect and surround suppression mechanism, a novel biologically computational method based on the av...Runway detection is a demanding task for autonomous landing of unmanned aerial vehicles. Inspired by the attenuation effect and surround suppression mechanism, a novel biologically computational method based on the avian contrast sensitivity is proposed for runway contour detection. For the noisy stimuli, deniosed responses of the biologically inspired Gabor energy operator are generalized followed by the denoising layer and the multiresolution fusion layer. Moreover, two factors such as contour effect and texture suppression are considered in the contrast sensitivity based surround inhibition. Different from traditional detectors, which do not distinguish between contours and texture edges, the proposed method can respond strongly to contours and suppress the texture information. Applying the contrast sensitivity inspired detector to noisy runway scenes yields effective contours, while the non-meaningful texture elements are removed dramatically at the same time. Besides the superior performance over traditional detectors, the proposed method is capable to provide insight into the attenuation effect of the avian contrast sensitivity function and has potential applications in computer vision and pattern recognition.展开更多
Most of Image Quality Assessment (IQA) metrics consist of two processes. In the first process, quality map of image is measured locally. In the second process, the last quality score is converted from the quality map ...Most of Image Quality Assessment (IQA) metrics consist of two processes. In the first process, quality map of image is measured locally. In the second process, the last quality score is converted from the quality map by using the pooling strategy. The first process had been made effective and significant progresses, while the second process was always done in simple ways. In the second process of the pooling strategy, the optimal perceptual pooling weights should be determined and computed according to Human Visual System (HVS). Thus, a reliable spatial pooling mathematical model based on HVS is an important issue worthy of study. In this paper, a new Visual Perceptual Pooling Strategy (VPPS) for IQA is presented based on contrast sensitivity and luminance sensitivity of HVS. Experimental results with the LIVE database show that the visual perceptual weights, obtained by the proposed pooling strategy, can effectively and significantly improve the performances of the IQA metrics with Mean Structural SIMilarity (MSSIM) or Phase Quantization Code (PQC). It is confirmed that the proposed VPPS demonstrates promising results for improving the performances of existing IQA metrics.展开更多
In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distor...In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.展开更多
Background The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study ai...Background The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study aimed to compare MTF derived from a ray tracing aberrometer and a DP system in early cataractous and normal eyes. Methods There were 128 subjects with 61 control eyes and 67 eyes with early cataract defined according to the Lens Opacities Classification System II1. A laser ray-tracing wavefront aberrometer (iTrace) and a double pass (DP) system (OQAS) assessed ocular MTF for 6.0 mm pupil diameters following dilation. Areas under the MTF (AUMTF) and their correlations were analyzed. Stepwise multiple regression analysis assessed factors affecting the differences between iTrace- and OQAS-derived AUMTF for the early cataract group. Results For both early cataract and control groups, iTrace-derived MTFs were higher than OQAS-derived MTFs across a range of spatial frequencies (P 〈0.01). No significant difference between the two groups occurred for iTrace-derived AUMTF, but the early cataract group had significantly smaller OQAS-derived AUMTF than did the control group (P 〈0.01). AUMTF determined from both the techniques demonstrated significant correlations with nuclear opacities, higher-order aberrations (HOAs), visual acuity, and contrast sensitivity functions, while the OQAS-derived AUMTF also demonstrated significant correlations with age and cortical opacity grade. The factors significantly affecting the difference between iTrace and OQAS AUMTF were root-mean-squared HOAs (standardized beta coefficient=-0.63, P 〈0.01) and age (standardized beta coefficient=0.26, P 〈0.01). Conclusions MTFs determined from a iTrace and a DP system (OQAS) differ significantly in early cataractous and normal subjects. Correlations with visual performance were higher for the DP system. OQAS-derived MTF may be useful as an indicator of visual performance in early cataract eyes.展开更多
基金Supported by the Institute of Health CarlosⅢ(No.COV20/00539)。
文摘AIM:To compare the visual perception(color and chromatic-achromatic contrast vision)of a small cohort of COVID-19 patients at the time of infection and after 6mo with that of a healthy population matched for sex and age.METHODS:A total of 25 patients(9 females,16 males,mean age:54±10y)with COVID-19 hospitalized in the COVID-19 Unit of the University Clinical Hospital of Valladolid were recruited for this preliminary study.Visual perception,as determined by monocular measurement of contrast sensitivity function(CSF)and color vision was assessed in each patient using the Optopad test.The results obtained were then compared with those of a sample of 16 age-and sex-matched healthy controls(5 females,11 males,mean age:50±6y)in which the same measurement procedure was repeated.Statistically significant differences between groups were assessed using the Mann-Whitney U test.Measurements were repeated after a minimum follow-up period of 6mo and statistically significant differences between the two time points in each group were assessed using the Wilcoxon signed rank test.RESULTS:Discrimination thresholds(color and chromatic-achromatic contrast vision)and their corresponding sensitivity,calculated as the inverse of the discrimination threshold,were evaluated.Analysis of the data revealed higher contrast threshold results(i.e.,worse contrast sensitivity)in the COVID-19 group than in the control group for all spatial frequencies studied in the Optopad-CSF achromatic test and most of the spatial frequencies studied in the Optopad-CSF chromatic test for the red-green and blue-yellow mechanisms.In addition,color threshold results in the COVID-19 group were also significantly higher(i.e.,worse color sensitivity)for almost all color mechanisms studied in the Optopad-Color test.At 6mo,most of the differences found between the groups were maintained despite COVID-19 recovery.CONCLUSION:The present results provide preliminary evidence that visual perception may be impaired in COVID-19,even when the infection has passed.Although further research is needed to determine the precise causes of this finding,analysis of CSF and color vision could provide valuable information on the visual impact of COVID-19.
基金supported by the National Natural Science Foundation of China(Grant Nos.61333004,61425008&91648205)
文摘Runway detection is a demanding task for autonomous landing of unmanned aerial vehicles. Inspired by the attenuation effect and surround suppression mechanism, a novel biologically computational method based on the avian contrast sensitivity is proposed for runway contour detection. For the noisy stimuli, deniosed responses of the biologically inspired Gabor energy operator are generalized followed by the denoising layer and the multiresolution fusion layer. Moreover, two factors such as contour effect and texture suppression are considered in the contrast sensitivity based surround inhibition. Different from traditional detectors, which do not distinguish between contours and texture edges, the proposed method can respond strongly to contours and suppress the texture information. Applying the contrast sensitivity inspired detector to noisy runway scenes yields effective contours, while the non-meaningful texture elements are removed dramatically at the same time. Besides the superior performance over traditional detectors, the proposed method is capable to provide insight into the attenuation effect of the avian contrast sensitivity function and has potential applications in computer vision and pattern recognition.
基金Supported by the National Natural Science Foundation of China (No. 60832003, 60902096, 61171163, 61071120)the Scientific Research Foundation of Graduate School of Ningbo University
文摘Most of Image Quality Assessment (IQA) metrics consist of two processes. In the first process, quality map of image is measured locally. In the second process, the last quality score is converted from the quality map by using the pooling strategy. The first process had been made effective and significant progresses, while the second process was always done in simple ways. In the second process of the pooling strategy, the optimal perceptual pooling weights should be determined and computed according to Human Visual System (HVS). Thus, a reliable spatial pooling mathematical model based on HVS is an important issue worthy of study. In this paper, a new Visual Perceptual Pooling Strategy (VPPS) for IQA is presented based on contrast sensitivity and luminance sensitivity of HVS. Experimental results with the LIVE database show that the visual perceptual weights, obtained by the proposed pooling strategy, can effectively and significantly improve the performances of the IQA metrics with Mean Structural SIMilarity (MSSIM) or Phase Quantization Code (PQC). It is confirmed that the proposed VPPS demonstrates promising results for improving the performances of existing IQA metrics.
文摘In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.
文摘Background The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study aimed to compare MTF derived from a ray tracing aberrometer and a DP system in early cataractous and normal eyes. Methods There were 128 subjects with 61 control eyes and 67 eyes with early cataract defined according to the Lens Opacities Classification System II1. A laser ray-tracing wavefront aberrometer (iTrace) and a double pass (DP) system (OQAS) assessed ocular MTF for 6.0 mm pupil diameters following dilation. Areas under the MTF (AUMTF) and their correlations were analyzed. Stepwise multiple regression analysis assessed factors affecting the differences between iTrace- and OQAS-derived AUMTF for the early cataract group. Results For both early cataract and control groups, iTrace-derived MTFs were higher than OQAS-derived MTFs across a range of spatial frequencies (P 〈0.01). No significant difference between the two groups occurred for iTrace-derived AUMTF, but the early cataract group had significantly smaller OQAS-derived AUMTF than did the control group (P 〈0.01). AUMTF determined from both the techniques demonstrated significant correlations with nuclear opacities, higher-order aberrations (HOAs), visual acuity, and contrast sensitivity functions, while the OQAS-derived AUMTF also demonstrated significant correlations with age and cortical opacity grade. The factors significantly affecting the difference between iTrace and OQAS AUMTF were root-mean-squared HOAs (standardized beta coefficient=-0.63, P 〈0.01) and age (standardized beta coefficient=0.26, P 〈0.01). Conclusions MTFs determined from a iTrace and a DP system (OQAS) differ significantly in early cataractous and normal subjects. Correlations with visual performance were higher for the DP system. OQAS-derived MTF may be useful as an indicator of visual performance in early cataract eyes.