This paper presents a novel design method of the Mission Success Space(MSS) for the evaluation on aircraft contribution effectiveness. MSS concept was proposed for giving success criterion of a mission and judging the...This paper presents a novel design method of the Mission Success Space(MSS) for the evaluation on aircraft contribution effectiveness. MSS concept was proposed for giving success criterion of a mission and judging the success by conventional mission effectiveness with regards to the aircraft capabilities. This space is created by the Mission Success Function(MSF) and the original Effectiveness Index Space(EIS) where empirical equations are usually assumed to be MSFs. Based on this MSS concept, this paper firstly defines the MSS-based evaluation, then further summarizes the evaluation process of the Contribution to System-of-Systems(CSS). More importantly, based on the thought of Inverse Design(ID), a new design method of MSF is presented comprehensively analyzing aircraft's CSS in a combat mission without using any empirical MSF. The definition of MSS based ID is given and the design procedure is sequentially introduced. Two different confrontation cases are depicted with many details as the simulation validation: Air-to-ground and Penetration. There are two design variables considered for designing MSS in the latter case while only one for the former. However, in both cases, the best design is given by evaluating the Gaussian fitting performance of CSS.展开更多
This paper presents a new solution to the problem of transmission cost allocation to its users.The proposed technique utilizes modified Z-bus theory,equivalent current injection and impedance of the generators and loa...This paper presents a new solution to the problem of transmission cost allocation to its users.The proposed technique utilizes modified Z-bus theory,equivalent current injection and impedance of the generators and loads,and is developed by the equal-sharing as well as the orthogonal projection principle.The procedure is performed in three steps.First,the modified Z-bus theory is used to calculate the contribution of the users into the network bus voltages as well as the branch currents.Then,the equal sharing principle is confirmed by the game theory solutions and is subsequently applied to identify the users’contributions into the branch power flows.After that,the orthogonal projections of the contributions are calculated and the concept of effective contributions is suggested.The proposed methodology provides the percentage shares of the users on the network complex variables,which help to better assess the contributions.A 2-bus and the IEEE 30-bus test system are used to validate the proposed technique.Finally,the proposed methodology is applied to the polish 2383-bus system to emphasize its applicability to large practical systems.展开更多
文摘This paper presents a novel design method of the Mission Success Space(MSS) for the evaluation on aircraft contribution effectiveness. MSS concept was proposed for giving success criterion of a mission and judging the success by conventional mission effectiveness with regards to the aircraft capabilities. This space is created by the Mission Success Function(MSF) and the original Effectiveness Index Space(EIS) where empirical equations are usually assumed to be MSFs. Based on this MSS concept, this paper firstly defines the MSS-based evaluation, then further summarizes the evaluation process of the Contribution to System-of-Systems(CSS). More importantly, based on the thought of Inverse Design(ID), a new design method of MSF is presented comprehensively analyzing aircraft's CSS in a combat mission without using any empirical MSF. The definition of MSS based ID is given and the design procedure is sequentially introduced. Two different confrontation cases are depicted with many details as the simulation validation: Air-to-ground and Penetration. There are two design variables considered for designing MSS in the latter case while only one for the former. However, in both cases, the best design is given by evaluating the Gaussian fitting performance of CSS.
文摘This paper presents a new solution to the problem of transmission cost allocation to its users.The proposed technique utilizes modified Z-bus theory,equivalent current injection and impedance of the generators and loads,and is developed by the equal-sharing as well as the orthogonal projection principle.The procedure is performed in three steps.First,the modified Z-bus theory is used to calculate the contribution of the users into the network bus voltages as well as the branch currents.Then,the equal sharing principle is confirmed by the game theory solutions and is subsequently applied to identify the users’contributions into the branch power flows.After that,the orthogonal projections of the contributions are calculated and the concept of effective contributions is suggested.The proposed methodology provides the percentage shares of the users on the network complex variables,which help to better assess the contributions.A 2-bus and the IEEE 30-bus test system are used to validate the proposed technique.Finally,the proposed methodology is applied to the polish 2383-bus system to emphasize its applicability to large practical systems.