We investigate the neutron and proton single particle (s.p.) potentials of asymmetric nuclear matter and their isospin dependence in various spin-isospin ST channels within the framework of the BruecknerHartree-Fock...We investigate the neutron and proton single particle (s.p.) potentials of asymmetric nuclear matter and their isospin dependence in various spin-isospin ST channels within the framework of the BruecknerHartree-Fock approach. It is shown that in symmetric nuclear matter, the s.p. potentials in both the isospinsinglet T = 0 channel and isospin-triplet T = 1 channel are essentially attractive, and the magnitudes in the two different channels are roughly the same. In neutron-rich nuclear matter, the isospin-splitting of the proton and neutron s.p. potentials turns out to be mainly determined by the isospin-singlet T = 0 channel contribution which becomes more attractive for the proton and more repulsive for the neutron at higher asymmetries.展开更多
基金Supported by National Natural Science Foundation of China (11175219, 10875151, 10740420550)Major State Basic Research Developing Program of China (2007CB815004)+2 种基金Knowledge Innovation Project of Chinese Academy of Sciences (KJCX2-EW-N01)Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (2009J2-26)CAS/SAFEA International Partnership Program for Creative Research Teams (CXTD-J2005-1)
文摘We investigate the neutron and proton single particle (s.p.) potentials of asymmetric nuclear matter and their isospin dependence in various spin-isospin ST channels within the framework of the BruecknerHartree-Fock approach. It is shown that in symmetric nuclear matter, the s.p. potentials in both the isospinsinglet T = 0 channel and isospin-triplet T = 1 channel are essentially attractive, and the magnitudes in the two different channels are roughly the same. In neutron-rich nuclear matter, the isospin-splitting of the proton and neutron s.p. potentials turns out to be mainly determined by the isospin-singlet T = 0 channel contribution which becomes more attractive for the proton and more repulsive for the neutron at higher asymmetries.