This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o...The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.展开更多
We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved AT...We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron.Particularly for the photon energy of the highfrequency laser more than atomic ionization potential,the width of plateau tends to a constant with increasing ellipticity of fundamental field,the dip structure disappears with increasing ellipticity of the high-frequency field.With the help of the quantum channel analysis,it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high.Moreover,one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction.Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.展开更多
Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from res...Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.展开更多
The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot...The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.展开更多
AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigu...AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.展开更多
This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose...This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose frequency tuning principle is established through an equivalent theoretical model.Based on the multiphase flow theory of gas-solid,it is effective to obtain the equivalent damping and stiffness of the particle damping.The dynamic equations of the coupled system,consisting of a boring bar with the TPD,are built by Hamilton’s principle.The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm.Moreover,an improvement is proposed to the existing gas-solid flow theory,and a comparative analysis of introducing the stiffness term on the damping effect is presented.The parameters of the TPD are optimized by the genetic algorithm,and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system.展开更多
Continuumtopology optimization considering the vibration response is of great value in the engineering structure design.The aimof this studyis toaddress the topological designoptimizationof harmonic excitationstructur...Continuumtopology optimization considering the vibration response is of great value in the engineering structure design.The aimof this studyis toaddress the topological designoptimizationof harmonic excitationstructureswith minimumlength scale control to facilitate structuralmanufacturing.Astructural topology design based on discrete variables is proposed to avoid localized vibration modes,gray regions and fuzzy boundaries in harmonic excitation topology optimization.The topological design model and sensitivity formulation are derived.The requirement of minimum size control is transformed into a geometric constraint using the discrete variables.Consequently,thin bars,small holes,and sharp corners,which are not conducive to the manufacturing process,can be eliminated from the design results.The present optimization design can efficiently achieve a 0–1 topology configuration with a significantly improved resonance frequency in a wide range of excitation frequencies.Additionally,the optimal solution for harmonic excitation topology optimization is not necessarily symmetric when the load and support are symmetric,which is a distinct difference fromthe static optimization design.Hence,one-half of the design domain cannot be selected according to the load and support symmetry.Numerical examples are presented to demonstrate the effectiveness of the discrete variable design for excitation frequency topology optimization,and to improve the design manufacturability.展开更多
We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,ex...We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.展开更多
A double invert variable polarity plasma arc (VPPA) power source based on 16-bit MCU applied for aluminum alloys was developed. Mechanics, electrical and the produced heat mechanism of VPPAW arc were tested and anal...A double invert variable polarity plasma arc (VPPA) power source based on 16-bit MCU applied for aluminum alloys was developed. Mechanics, electrical and the produced heat mechanism of VPPAW arc were tested and analyzed. Results indicate that during the VPPA welding procedure of aluminum alloy, the arc of electrode negative (EN) has more effect on force, whereas the arc of electrode positive ( EP ) has more effect on heat. It should be noted that keeping the balance of the force and heat is the critical element of VPPAW. This power source had been successfully used to weld aluminum alloy with a 15 mm thickness in vertical welding. The conclusions are applicable to the variable polarity plasma arc welding technique used in the aerospace industry.展开更多
A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can i...A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.展开更多
Arc pressure is one of the key factors for variable polarity plasma arc(VPPA) and welding pool formation. In this paper, VPPA pressure is measured by pressure transducer and U-tube barometer methods, and advantages ...Arc pressure is one of the key factors for variable polarity plasma arc(VPPA) and welding pool formation. In this paper, VPPA pressure is measured by pressure transducer and U-tube barometer methods, and advantages and disadvantages of the two methods are compared. The effects of welding parameters, including with straight polarity(SP) current, reverse polarity(RP) current, time ratio of SP to RP, plasma gas flow rate, on VPPA pressure are investigated by using an orthogonal design. The experimental results indicate that the influencing degree of the welding parameters are in the order of plasma gas flow rate, SP current, time ratio of SP to RP, RP current. These results are important to researches of VPPA welding process and its mechanism. The physics behavior of VPPA is taken into account when the above influence mechanisms are analyzed. Firstly, according to the mechanism of the cooling compression to the arc, the compression to VPPA is enhanced with the increase of plasma gas flow, so the VPPA pressure would increase obviously. Secondly, although the temperature of VPPA is as a function of the welding current, the radius of VPPA is also enhanced. So the effects of SP current on VPPA pressure are inferior to the effects of plasma gas flow. Thirdly, VPPA pressure increases as a function of time ratio of SP to RP because the frequency of welding current influences the arc pressure to the some degree; Finally, the RP intervals are farther less than the SP intervals, so the influence to the pressure is minimal.展开更多
The variable polarity power source which incorporates a constant current power and a secondary inverter does not need special apparatus for stabilizing arc. The pulse for stabilizing arc is created by the circuit stru...The variable polarity power source which incorporates a constant current power and a secondary inverter does not need special apparatus for stabilizing arc. The pulse for stabilizing arc is created by the circuit structure itself. The paper analyzes the principle of acquiring the pulse, provides the better method to improve the arc stabilization under smaller welding current. Test shows the arc is highly stable , and the process has no high frequency electromagnetic interference, which is suitable for automatic welding case.展开更多
Abstract Horizontal welding is important for heavy or huge welding structures. Keyhole mode variable polarity plasma arc welding of aluminum alloy plates with medium thickness was carried out in horizontal position. T...Abstract Horizontal welding is important for heavy or huge welding structures. Keyhole mode variable polarity plasma arc welding of aluminum alloy plates with medium thickness was carried out in horizontal position. The characteristic of welding defects was introduced. Preliminary experiments indicated that the undercut defect could not be eliminated easily. The relationship between welding parameters and the undercut defect showed that this deject could be lessened by using higher heat input. The fluid flow of weld pool was observed by a high speed camera. The fluid flow in weld pool was not symmetric and much of molten metal gathered in the lower part. The fluid flow velocity in the lower part was bigger than that in the upper part. To this end, the formative mechanism of the undercut defect was proposed. The flowability of the molten metal was an influential factor for the undercut defect. A preheating method was designed to verify the formative mechanism.展开更多
The passive visual sensing method was successfully applied to monitor the weld pool in TIG welding of aluminium alloy. In order to reduce the disturbance from the arc and acquire clear image, two techniques were used:...The passive visual sensing method was successfully applied to monitor the weld pool in TIG welding of aluminium alloy. In order to reduce the disturbance from the arc and acquire clear image, two techniques were used: one was the own-developed computer-controlled variable polarity power(VPP), the other was the composite filter technology. The VPP source did not have high-frequency electromagnetic interference from arc stabilizer in traditional AC welding power, and its output current wave was controlled by computer, so the imaging current and the imaging time could be adjusted easily. Filter spectral window was identified at 650 nm by analyzing the measured arc light spectral distribution. At the end, the high quality and clear images of welding pool of aluminium alloy were successfully acquired at low imaging current.展开更多
The mechanical properties of the 2219 aluminum alloy welded joints by vertical-up variant polarity plasma arc welding (VPPAW) with keyhole were analyzed. The tensile strength of welded joints can reach 55% of that of ...The mechanical properties of the 2219 aluminum alloy welded joints by vertical-up variant polarity plasma arc welding (VPPAW) with keyhole were analyzed. The tensile strength of welded joints can reach 55% of that of base metal. The microstructure of weld joints was studied to explain the mechanical properties of the weld. The results show that the intensity of weld center is less than that of HAZ, and the intensity of weld center is the worst. So an advanced welding procedures is presented to reduce the heat input and increase the welding speed. The results in this procedures show that the tensile strength of welded joints reaches more than 60% of that of the parent metal, and the specific elongation does not descend.展开更多
Variable polarity plasma arc welding (VPPAW) is one of the most excellent processes used for welding aluminum alloys recently. It combines the advantages of variable polarity welding and plasma arc welding, and can ac...Variable polarity plasma arc welding (VPPAW) is one of the most excellent processes used for welding aluminum alloys recently. It combines the advantages of variable polarity welding and plasma arc welding, and can achieve the most rational heat distribution and cathodic cleaning. With the VPPAW equipment developed by authors, the cathodic cleaning regularity that is one of the most important problems in VPPAW is investigated in this paper. The results will be helpful in realizing the real cleaning mechanism.展开更多
Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse cur...Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse current frequency 40 kHz on weld bead geometry, microstrueture and microhardness were analyzed. Experimental results indicate that, compared to that of the conventional VP-GTAW process, the weld depth and ratio of weld depth to width are improved significantly by the variable polarity frequency in the HPVP-GTAW process, which the ratio of weld depth to width is improved by 36% at equal variable polarity frequency of 100 Hz, and improved by 55% with that of 200 Hz. Weld microstructure and microhardness distribution are changed obviously with the increase of variable polarity frequency. In the conventional VP-GTA W process, the grains in weld central zone are coarser, and the microhardness in weld central zone and fusion zone is about 95 HV and the lowest 82 HV, respectively. The microhardness is enhanced to a certain extent both in the weld central zone and fusion zone with the variation of variable polarity frequency in the HPVP-GTAW process due to the refinement and uniformity of weld microstructure. With the variable polarity frequency of 600 Hz, the microhardness in weld central zone and fusion zone reaches nearly 110 HV and 97 HV, respectively.展开更多
Based on the pre-existing wire melting rate model of direct-current submerged arc welding ( DC-SAW) , a new numerical model of wire melting rate was developed for variable-polarity submerged are welding (VP-SAW) b...Based on the pre-existing wire melting rate model of direct-current submerged arc welding ( DC-SAW) , a new numerical model of wire melting rate was developed for variable-polarity submerged are welding (VP-SAW) by accounting for the combined effects of duty cycle β and offset α. The experimental measurements are in a good agreement with the results calculated by this new wire melting rate model, with the maximum discrepancy being less than 10%. Therefore it is evident that this new numerical model can successfully describe the dependence of wire melting rate on the duty cycle β and offset α.展开更多
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金supported by the Shenyang Science and Technology Program(grant number 22-301-1-10).
文摘The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12104285,12074240,12204135,12374260,12264013,12204136,92250303,and 12074418)the Guangdong Basicand Applied Basic Research Foundation (Grant No.2022A1515011742)+5 种基金the Special Scientific Research Program supported by the Shaanxi Education Department (Grant No.22JK0423)the Natural Science Basic Research Program of Shaanxi Province of China (Grant Nos.2023-JC-QN-0085 and 2023-JC-QN-0267)the Hainan Provincial Natural Science Foundation of China (Grant Nos.122CXTD504,123MS002,123QN179,123QN180,and 122QN217)the Sino-German Mobility Programme (Grant No.M-0031)the Xi’an Aeronautical Institute 2023 Innovation and Entrepreneurship Training Program for college students (Grant No.S202311736036)the Course Ideological and Political Education Program (Grant No.23ZLGC5030)。
文摘We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron.Particularly for the photon energy of the highfrequency laser more than atomic ionization potential,the width of plateau tends to a constant with increasing ellipticity of fundamental field,the dip structure disappears with increasing ellipticity of the high-frequency field.With the help of the quantum channel analysis,it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high.Moreover,one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction.Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.
基金supported by the National Natural Science Foundation of China (62101588)the National Key Research and Development Program of China (SQ2022YFB3806200)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi (20240129)the Postdoctoral Fellowship Program of CPSF (GZC20242285)
文摘Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.
基金financially supported by the National Natural Science Foundation of China (42461011, 42071014)the Fellowship of the China Postdoctoral Science Foundation (2021M703466)
文摘The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.
基金Project(51275343)supported by the National Natural Science Foundation of China
文摘AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.
基金Project supported by the National Natural Science Foundation of China(Nos.12172014 and 11972050)。
文摘This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose frequency tuning principle is established through an equivalent theoretical model.Based on the multiphase flow theory of gas-solid,it is effective to obtain the equivalent damping and stiffness of the particle damping.The dynamic equations of the coupled system,consisting of a boring bar with the TPD,are built by Hamilton’s principle.The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm.Moreover,an improvement is proposed to the existing gas-solid flow theory,and a comparative analysis of introducing the stiffness term on the damping effect is presented.The parameters of the TPD are optimized by the genetic algorithm,and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system.
基金supported by the National Natural Science Foundation of China (12002218 and 12032008)the Youth Foundation of Education Department of Liaoning Province (Grant No.JYT19034).
文摘Continuumtopology optimization considering the vibration response is of great value in the engineering structure design.The aimof this studyis toaddress the topological designoptimizationof harmonic excitationstructureswith minimumlength scale control to facilitate structuralmanufacturing.Astructural topology design based on discrete variables is proposed to avoid localized vibration modes,gray regions and fuzzy boundaries in harmonic excitation topology optimization.The topological design model and sensitivity formulation are derived.The requirement of minimum size control is transformed into a geometric constraint using the discrete variables.Consequently,thin bars,small holes,and sharp corners,which are not conducive to the manufacturing process,can be eliminated from the design results.The present optimization design can efficiently achieve a 0–1 topology configuration with a significantly improved resonance frequency in a wide range of excitation frequencies.Additionally,the optimal solution for harmonic excitation topology optimization is not necessarily symmetric when the load and support are symmetric,which is a distinct difference fromthe static optimization design.Hence,one-half of the design domain cannot be selected according to the load and support symmetry.Numerical examples are presented to demonstrate the effectiveness of the discrete variable design for excitation frequency topology optimization,and to improve the design manufacturability.
基金supported by the National Natural Science Foundation of China(11971276,12171287)Natural Science Foundation of Shandong Province(ZR2016JL004)+1 种基金supported by the China Postdoctoral Science Foundation(2021TQ0017,2021M700244)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210019)。
文摘We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.
基金This work was supported by the National Nature Science Foundation of China ( Grant No. 50764007).
文摘A double invert variable polarity plasma arc (VPPA) power source based on 16-bit MCU applied for aluminum alloys was developed. Mechanics, electrical and the produced heat mechanism of VPPAW arc were tested and analyzed. Results indicate that during the VPPA welding procedure of aluminum alloy, the arc of electrode negative (EN) has more effect on force, whereas the arc of electrode positive ( EP ) has more effect on heat. It should be noted that keeping the balance of the force and heat is the critical element of VPPAW. This power source had been successfully used to weld aluminum alloy with a 15 mm thickness in vertical welding. The conclusions are applicable to the variable polarity plasma arc welding technique used in the aerospace industry.
文摘A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.
基金supported by Key Project of National Natural Science Foundation of China (Grant No.50735006)National Basic Research Program of China(973 Program, Grant No. 2007CB607601)General Project of National Natural Science Foundation of China (Grant No.50675223)
文摘Arc pressure is one of the key factors for variable polarity plasma arc(VPPA) and welding pool formation. In this paper, VPPA pressure is measured by pressure transducer and U-tube barometer methods, and advantages and disadvantages of the two methods are compared. The effects of welding parameters, including with straight polarity(SP) current, reverse polarity(RP) current, time ratio of SP to RP, plasma gas flow rate, on VPPA pressure are investigated by using an orthogonal design. The experimental results indicate that the influencing degree of the welding parameters are in the order of plasma gas flow rate, SP current, time ratio of SP to RP, RP current. These results are important to researches of VPPA welding process and its mechanism. The physics behavior of VPPA is taken into account when the above influence mechanisms are analyzed. Firstly, according to the mechanism of the cooling compression to the arc, the compression to VPPA is enhanced with the increase of plasma gas flow, so the VPPA pressure would increase obviously. Secondly, although the temperature of VPPA is as a function of the welding current, the radius of VPPA is also enhanced. So the effects of SP current on VPPA pressure are inferior to the effects of plasma gas flow. Thirdly, VPPA pressure increases as a function of time ratio of SP to RP because the frequency of welding current influences the arc pressure to the some degree; Finally, the RP intervals are farther less than the SP intervals, so the influence to the pressure is minimal.
基金This research was supported inpart by the Found ation !(No .990 951 1 1 2 )for Research admini stered by HarbinInstituteof Te
文摘The variable polarity power source which incorporates a constant current power and a secondary inverter does not need special apparatus for stabilizing arc. The pulse for stabilizing arc is created by the circuit structure itself. The paper analyzes the principle of acquiring the pulse, provides the better method to improve the arc stabilization under smaller welding current. Test shows the arc is highly stable , and the process has no high frequency electromagnetic interference, which is suitable for automatic welding case.
基金This research is supported by the National Natural Science Foundation of China (Grant No. 51475105).
文摘Abstract Horizontal welding is important for heavy or huge welding structures. Keyhole mode variable polarity plasma arc welding of aluminum alloy plates with medium thickness was carried out in horizontal position. The characteristic of welding defects was introduced. Preliminary experiments indicated that the undercut defect could not be eliminated easily. The relationship between welding parameters and the undercut defect showed that this deject could be lessened by using higher heat input. The fluid flow of weld pool was observed by a high speed camera. The fluid flow in weld pool was not symmetric and much of molten metal gathered in the lower part. The fluid flow velocity in the lower part was bigger than that in the upper part. To this end, the formative mechanism of the undercut defect was proposed. The flowability of the molten metal was an influential factor for the undercut defect. A preheating method was designed to verify the formative mechanism.
文摘The passive visual sensing method was successfully applied to monitor the weld pool in TIG welding of aluminium alloy. In order to reduce the disturbance from the arc and acquire clear image, two techniques were used: one was the own-developed computer-controlled variable polarity power(VPP), the other was the composite filter technology. The VPP source did not have high-frequency electromagnetic interference from arc stabilizer in traditional AC welding power, and its output current wave was controlled by computer, so the imaging current and the imaging time could be adjusted easily. Filter spectral window was identified at 650 nm by analyzing the measured arc light spectral distribution. At the end, the high quality and clear images of welding pool of aluminium alloy were successfully acquired at low imaging current.
文摘The mechanical properties of the 2219 aluminum alloy welded joints by vertical-up variant polarity plasma arc welding (VPPAW) with keyhole were analyzed. The tensile strength of welded joints can reach 55% of that of base metal. The microstructure of weld joints was studied to explain the mechanical properties of the weld. The results show that the intensity of weld center is less than that of HAZ, and the intensity of weld center is the worst. So an advanced welding procedures is presented to reduce the heat input and increase the welding speed. The results in this procedures show that the tensile strength of welded joints reaches more than 60% of that of the parent metal, and the specific elongation does not descend.
文摘Variable polarity plasma arc welding (VPPAW) is one of the most excellent processes used for welding aluminum alloys recently. It combines the advantages of variable polarity welding and plasma arc welding, and can achieve the most rational heat distribution and cathodic cleaning. With the VPPAW equipment developed by authors, the cathodic cleaning regularity that is one of the most important problems in VPPAW is investigated in this paper. The results will be helpful in realizing the real cleaning mechanism.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 51005011 ) and the Fundamental Research Funds for the Central Universities ( YWF-12-LGJC-001 ).
文摘Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse current frequency 40 kHz on weld bead geometry, microstrueture and microhardness were analyzed. Experimental results indicate that, compared to that of the conventional VP-GTAW process, the weld depth and ratio of weld depth to width are improved significantly by the variable polarity frequency in the HPVP-GTAW process, which the ratio of weld depth to width is improved by 36% at equal variable polarity frequency of 100 Hz, and improved by 55% with that of 200 Hz. Weld microstructure and microhardness distribution are changed obviously with the increase of variable polarity frequency. In the conventional VP-GTA W process, the grains in weld central zone are coarser, and the microhardness in weld central zone and fusion zone is about 95 HV and the lowest 82 HV, respectively. The microhardness is enhanced to a certain extent both in the weld central zone and fusion zone with the variation of variable polarity frequency in the HPVP-GTAW process due to the refinement and uniformity of weld microstructure. With the variable polarity frequency of 600 Hz, the microhardness in weld central zone and fusion zone reaches nearly 110 HV and 97 HV, respectively.
文摘Based on the pre-existing wire melting rate model of direct-current submerged arc welding ( DC-SAW) , a new numerical model of wire melting rate was developed for variable-polarity submerged are welding (VP-SAW) by accounting for the combined effects of duty cycle β and offset α. The experimental measurements are in a good agreement with the results calculated by this new wire melting rate model, with the maximum discrepancy being less than 10%. Therefore it is evident that this new numerical model can successfully describe the dependence of wire melting rate on the duty cycle β and offset α.