The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability poss...The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.展开更多
Recently, switched control systems have been attracting much attention m the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance d...Recently, switched control systems have been attracting much attention m the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance due to its wide ranges of applications in nature, engineering, and social sciences.展开更多
Recently,switched control systems have been attracting much attention in the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance d...Recently,switched control systems have been attracting much attention in the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance due to its wide ranges of applications in nature,engineering,and social sciences. For survival,natural biological systems switch in strategies in accordance to environmental changes. For improved perfor-mance , switching has been extensively utilized/exploited in many engineering systems such as electronics, power systems, and traffic control,among others.In addition,switched behaviors exhibit in social systems.展开更多
基金partially supported by the National Natural Science Foundation of China(62003097,62121004,62033003,62073019)the Local Innovative and Research Teams Project of Guangdong Special Support Program(2019BT02X353)+2 种基金the Key Area Research and Development Program of Guangdong Province(2021B0101410005)the Joint Funds of Guangdong Basic and Applied Basic Research Foundation(2019A1515110505)。
文摘The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.
文摘Recently, switched control systems have been attracting much attention m the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance due to its wide ranges of applications in nature, engineering, and social sciences.
文摘Recently,switched control systems have been attracting much attention in the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance due to its wide ranges of applications in nature,engineering,and social sciences. For survival,natural biological systems switch in strategies in accordance to environmental changes. For improved perfor-mance , switching has been extensively utilized/exploited in many engineering systems such as electronics, power systems, and traffic control,among others.In addition,switched behaviors exhibit in social systems.