In the present paper,with the help of the resolvent operator and some analytic methods,the exact controllability and continuous dependence are investigated for a fractional neutral integro-differential equations with ...In the present paper,with the help of the resolvent operator and some analytic methods,the exact controllability and continuous dependence are investigated for a fractional neutral integro-differential equations with state-dependent delay.As an application,we also give one example to demonstrate our results.展开更多
The admission control scheme is investigated for a FIFO self-similar queuing system with Quality of Service (QoS) performance guarantees. Since the self-similar queuing system performance analysis is often carried out...The admission control scheme is investigated for a FIFO self-similar queuing system with Quality of Service (QoS) performance guarantees. Since the self-similar queuing system performance analysis is often carried out under the condition of infinite buffer, it is difficult to deduce the upper boundary of buffer overflow probability. To overcome this shortcoming, a simple overflow condition is proposed, which defines a buffer overflow occurrence whenever the arrival rate exceeds the service rate. The analytic formula for the buffer overflow probability upper boundary is easily obtained under this condition. The required bandwidth upper boundary with long-range dependence input and determined overflow probability is then derived from this formula. Based on the above analytic formulas, the upper boundaries of the admission control regions for homogeneous and heterogeneous long-range dependence traffic sources are separately obtained. Finally, an effective admission control scheme for long-range dependence input is proposed. Simulation studies with real traffic have confirmed the validity of these results.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标...这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标准界限限制。所有获得的结果是延期依赖者并且由不包含系统矩阵的分解的严格的 LMI 提出。数字例子证明建议方法不比存在的保守。展开更多
A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop sy...A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.展开更多
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, ...The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.展开更多
The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such tha...The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such that for a time-varying delay in states, the linear system with nonlinear perturbation remains robustly stable and passive. In the system, the delay is time-varying. And the derivation of delay has the maximum and minimum value. The time-varying nonlinear perturbation is allowed to be norm-bounded. Using the effective linear matrix inequality methodology, the sufficient condition is primarily obtained for the system to have robust stability and passivity. Subsequently the existent condition of a state feedback controller is given, and the explicit expression of the controller is obtained by means of the solution of linear matrix inequalities (LMIs). In the end, a numerical example is given to demonstrate the validity and applicability of the proposed approach.展开更多
Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to ...Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to monitor these process stages.If the process stages are independent,this is a meaningful procedure.However,they are not independent in many manufacturing scenarios.The standard Shewhart control charts can not provide the information to determine which process stage or group of process stages has caused the problems(i.e.,standard Shewhart control charts could not diagnose dependent manufacturing process stages).This study proposes a selective neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distinguish incoming quality problems and problems in the current stage of a manufacturing process.Numerical results show that the proposed method is an improvement over the use of separate Shewhart control chart for each of dependent process stages,and even ordinary quality practitioners who lack of expertise in theoretical analysis can implement regression estimation and neural computing readily.展开更多
The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent...The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.展开更多
This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent...This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent result on bounding of cross products of vectors, we obtain new delay-dependent sufficient conditions for the existence of the guaranteed cost controller in terms of linear matrix inequalities. Two examples are presented which show the effectiveness of our approach.展开更多
In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a ...In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H ∞ performance indices is induced, and then a strategy for H ∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H ∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach. Keywords Multi-time-delay - discrete time system - LMI - delay-dependent - H ∞ control Bai-Da Qu received B. S. degree in electrical automation from Fuxin Mining Institute, China in 1982, M. Eng. degree from Hefei University of Polytechnology in 1990, and Ph.D from Northerneastern University in 1999. He was an electro-mechanical engineer at Erdaohezi Mine, Heilongjiang, China from 1982 to 1990, a Lecturer, Senior Engineer, Associate Professor and Professor in Shenyang Institue of Technology from 1990 to 2002. He is currently a professor in Communication and Control Engineering School, Southern Yangtze University. His research interests include control theory and applications (robust control, H ∞ control, time-delay systems, complex systems), system engineering (modeling, analysis and simulation, MIS,CMIS), power-electronics and electrical driving, signal detecting and process, industrial automation.展开更多
In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the d...In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.展开更多
This study aims to investigate the phenomenon of technological gadget usage among pre-university students,which include the time spent using them,as well as their purpose and influence.A descriptive research design was...This study aims to investigate the phenomenon of technological gadget usage among pre-university students,which include the time spent using them,as well as their purpose and influence.A descriptive research design was adopted in this study.131 pre-university students were randomly selected to answer a structured questionnaire.They were informed two weeks earlier to keep track on their time spent on technological devices,before answering the questionnaire.Findings showed that 99.2%of the respondents owned at least two technological gadgets,and all respondents own a smartphone.The main two gadgets that respondents spend at least 4 h a day on are smartphones(65.6%)and computers/laptops(21.4%).This indicates that smartphones are commonly used and owned among the respondents.The majority of the respondents are moderately nomophobia and moderately dependent on smartphones(70.2%and 66.4%,respectively).Correlation analysis demonstrates that the total time spent on gadgets in a day has a significant positive correlation with gadget dependency and total number of gadgets owned.Meanwhile,logistic regression was conducted to estimate the probability of nomophobia and dependency using total time spent and total number of technological gadgets.From thefindings,it was demonstrated that when the total time spent on using technological gadgets increasing,there is greater probability that the respondents develop nomophobia and dependency.This indicates that nomophobia and dependency to technological gadgets can be used to predict lifestyle profiles.The use of technological gadgets can bring both benefit and harm to its user.In light of this,user has to remain rational in order to derive maximum benefit from it.展开更多
In the era of big data,the conflict between data mining and data privacy protection is increasing day by day.Traditional information security focuses on protecting the security of attribute values without semantic ass...In the era of big data,the conflict between data mining and data privacy protection is increasing day by day.Traditional information security focuses on protecting the security of attribute values without semantic association.The data privacy of big data is mainly reflected in the effective use of data without exposing the user’s sensitive information.Considering the semantic association,reasonable security access for privacy protect is required.Semi-structured and self-descriptive XML(eXtensible Markup Language)has become a common form of data organization for database management in big data environments.Based on the semantic integration nature of XML data,this paper proposes a data access control model for individual users.Through the semantic dependency between data and the integration process from bottom to top,the global visual range of inverted XML structure is realized.Experimental results show that the model effectively protects the privacy and has high access efficiency.展开更多
This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bo...This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.展开更多
The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping a...The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closed- loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.展开更多
The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient conditio...The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient condition is obtained for the nominal system, and then, based-on the former, the delay-dependent robust passivity criteria is provided and the corresponding controller is designed in terms of linear matrix inequalities. Finally, a numerical example is given to demonstrate the validity of the proposed approach.展开更多
The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional ...The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.展开更多
文摘In the present paper,with the help of the resolvent operator and some analytic methods,the exact controllability and continuous dependence are investigated for a fractional neutral integro-differential equations with state-dependent delay.As an application,we also give one example to demonstrate our results.
文摘The admission control scheme is investigated for a FIFO self-similar queuing system with Quality of Service (QoS) performance guarantees. Since the self-similar queuing system performance analysis is often carried out under the condition of infinite buffer, it is difficult to deduce the upper boundary of buffer overflow probability. To overcome this shortcoming, a simple overflow condition is proposed, which defines a buffer overflow occurrence whenever the arrival rate exceeds the service rate. The analytic formula for the buffer overflow probability upper boundary is easily obtained under this condition. The required bandwidth upper boundary with long-range dependence input and determined overflow probability is then derived from this formula. Based on the above analytic formulas, the upper boundaries of the admission control regions for homogeneous and heterogeneous long-range dependence traffic sources are separately obtained. Finally, an effective admission control scheme for long-range dependence input is proposed. Simulation studies with real traffic have confirmed the validity of these results.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
文摘这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标准界限限制。所有获得的结果是延期依赖者并且由不包含系统矩阵的分解的严格的 LMI 提出。数字例子证明建议方法不比存在的保守。
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z182), National Natu- ral Science Foundation of China (60736021), and National Creative Research Groups Science Foundation of China (60721062)
基金Supported by National Natural Science Foundation of China (60721062) and National High Technology Research and Development Program of China (863 Program) (2006AA04Z182)
文摘A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.
文摘The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (60674026 60574051).
文摘The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such that for a time-varying delay in states, the linear system with nonlinear perturbation remains robustly stable and passive. In the system, the delay is time-varying. And the derivation of delay has the maximum and minimum value. The time-varying nonlinear perturbation is allowed to be norm-bounded. Using the effective linear matrix inequality methodology, the sufficient condition is primarily obtained for the system to have robust stability and passivity. Subsequently the existent condition of a state feedback controller is given, and the explicit expression of the controller is obtained by means of the solution of linear matrix inequalities (LMIs). In the end, a numerical example is given to demonstrate the validity and applicability of the proposed approach.
基金supported in part by the National Natural Science Foundation of China(No.51775279)the Fundamental Research Funds for the Central Universities(Nos. 1005-YAH15055,NS2017034)+2 种基金the China Postdoctoral Science Foundation(No.2016M591838)the Natural Science Foundation of Jiangsu Province (No.BK20150745)the Postdoctoral Science Foundation of of Jiangsu Province(No.1501024C)
文摘Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to monitor these process stages.If the process stages are independent,this is a meaningful procedure.However,they are not independent in many manufacturing scenarios.The standard Shewhart control charts can not provide the information to determine which process stage or group of process stages has caused the problems(i.e.,standard Shewhart control charts could not diagnose dependent manufacturing process stages).This study proposes a selective neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distinguish incoming quality problems and problems in the current stage of a manufacturing process.Numerical results show that the proposed method is an improvement over the use of separate Shewhart control chart for each of dependent process stages,and even ordinary quality practitioners who lack of expertise in theoretical analysis can implement regression estimation and neural computing readily.
文摘The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.
基金This work was supported by the National Natural Science Foundation of China (No. 10461001).
文摘This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent result on bounding of cross products of vectors, we obtain new delay-dependent sufficient conditions for the existence of the guaranteed cost controller in terms of linear matrix inequalities. Two examples are presented which show the effectiveness of our approach.
文摘In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H ∞ performance indices is induced, and then a strategy for H ∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H ∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach. Keywords Multi-time-delay - discrete time system - LMI - delay-dependent - H ∞ control Bai-Da Qu received B. S. degree in electrical automation from Fuxin Mining Institute, China in 1982, M. Eng. degree from Hefei University of Polytechnology in 1990, and Ph.D from Northerneastern University in 1999. He was an electro-mechanical engineer at Erdaohezi Mine, Heilongjiang, China from 1982 to 1990, a Lecturer, Senior Engineer, Associate Professor and Professor in Shenyang Institue of Technology from 1990 to 2002. He is currently a professor in Communication and Control Engineering School, Southern Yangtze University. His research interests include control theory and applications (robust control, H ∞ control, time-delay systems, complex systems), system engineering (modeling, analysis and simulation, MIS,CMIS), power-electronics and electrical driving, signal detecting and process, industrial automation.
基金partially supported by the National Science Foundation of China(11971320,11971496)the National Key R&D Program of China(2020YFA0712500)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010530)。
文摘In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.
基金the Universiti Kebangsaan Malaysia,Geran Galakan Penyelidikan,GGP-2020-040.
文摘This study aims to investigate the phenomenon of technological gadget usage among pre-university students,which include the time spent using them,as well as their purpose and influence.A descriptive research design was adopted in this study.131 pre-university students were randomly selected to answer a structured questionnaire.They were informed two weeks earlier to keep track on their time spent on technological devices,before answering the questionnaire.Findings showed that 99.2%of the respondents owned at least two technological gadgets,and all respondents own a smartphone.The main two gadgets that respondents spend at least 4 h a day on are smartphones(65.6%)and computers/laptops(21.4%).This indicates that smartphones are commonly used and owned among the respondents.The majority of the respondents are moderately nomophobia and moderately dependent on smartphones(70.2%and 66.4%,respectively).Correlation analysis demonstrates that the total time spent on gadgets in a day has a significant positive correlation with gadget dependency and total number of gadgets owned.Meanwhile,logistic regression was conducted to estimate the probability of nomophobia and dependency using total time spent and total number of technological gadgets.From thefindings,it was demonstrated that when the total time spent on using technological gadgets increasing,there is greater probability that the respondents develop nomophobia and dependency.This indicates that nomophobia and dependency to technological gadgets can be used to predict lifestyle profiles.The use of technological gadgets can bring both benefit and harm to its user.In light of this,user has to remain rational in order to derive maximum benefit from it.
基金This work was supported by Funding of Jiangsu Innovation Program for Graduate Education KYLX_0285,the National Natural Science Foundation of China(No.61602241)the Natural Science Foundation of Jiangsu Province(No.BK20150758)the pre-study fund of PLA University of Science and Technology.
文摘In the era of big data,the conflict between data mining and data privacy protection is increasing day by day.Traditional information security focuses on protecting the security of attribute values without semantic association.The data privacy of big data is mainly reflected in the effective use of data without exposing the user’s sensitive information.Considering the semantic association,reasonable security access for privacy protect is required.Semi-structured and self-descriptive XML(eXtensible Markup Language)has become a common form of data organization for database management in big data environments.Based on the semantic integration nature of XML data,this paper proposes a data access control model for individual users.Through the semantic dependency between data and the integration process from bottom to top,the global visual range of inverted XML structure is realized.Experimental results show that the model effectively protects the privacy and has high access efficiency.
基金the National Natural Science Foundation of China (No. 60525304)
文摘This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.
基金National Natural Science Foundation Under Grant No.61074045,60721062the 973 Program 2006CB705400 of China
文摘The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closed- loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.
文摘The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient condition is obtained for the nominal system, and then, based-on the former, the delay-dependent robust passivity criteria is provided and the corresponding controller is designed in terms of linear matrix inequalities. Finally, a numerical example is given to demonstrate the validity of the proposed approach.
基金This work was partially supported by the National Natural Science Foundation of China(No.60504008).
文摘The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.