Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of...Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.展开更多
Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature fiel...Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independe...The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy.展开更多
The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation s...The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,...In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,and the speed control model is proposed from the perspective of vehicles themselves,to obtain a stable fleet with the same distance and speed.However,in this process,the initial condition of the vehicle,the traffic flow environment,and the efficiency of the fleet formation are less considered.Therefore,based on summarizing the existing fleet building model,this paper puts forward the rapid construction model and algorithm of a cooperative adaptive cruise control platoon fleet.One of the important goals of forming a team is to enter the team with the smoothest trajectory in the shortest time.Therefore,this chapter studies the trajectory optimization of the vehicle formation process from the perspective of vehicle dynamics.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
[Objective] To screen out the biological compound bactericides for grape anthracnose, reduce and replace the use of chemical pesticide. [Methods] The de- termination on the indoor bacteriostatic activity of different ...[Objective] To screen out the biological compound bactericides for grape anthracnose, reduce and replace the use of chemical pesticide. [Methods] The de- termination on the indoor bacteriostatic activity of different proportions of Bacillus subtilis and pyraclostrobin to grape anthracnose was carried out, and mycelial growth rate method was adopted to determine the toxicity of Bacillus subtilis and pyraclostrobin as well as their 5 mixtures to grape anthracnose. [Results] The EC50 of Bacillus subtilis and pyraclostrobin as well as their mixture combinations of 1:1, 1:2, 1:3, 1:4 and 1:5 to grape anthracnose were respectively 1.969 8, 1.527 4, 1.373 2, 1.294 8 and 1.247 3 μg/ml; the synergistic coefficients (SR) of the 5 mix- ture combinations to grape anthracnose were 1.70, 1.25, 1.13, 1.12 and 1.12, re- spectively, in which the synergistic effect of 1:1 was the largest. The indoor biologi- cal activity of pyraclostrobin(EC50 was 1.054 0μg/ml) was higher than that of Bacil- lus subtilis(EC50 was 15.017 5 μg/ml). 50 d after the agentia(before the harvesting), the investigation results showed that 1 000-fold dilution, 1 500-fold dilution and 2 000- fold dilution as well as each single dosage of 20% pyraclostrobin .200×10^8 cfu/g Bacillus subtili wettable powder all had better control efficiency to grape anthracnose after fruit setting and before bagging, in which the treatments of high concentration and middle concentration were higher than the treatments of low concentration and two single dosages: the highest control efficiency of high concentration was 90.03%, which was higher than all other treatments; the control efficiency of middle concen- tration was 87.01%, which was higher than that of low concentration and each sin- gle dosage; the control efficiency of low concentration was 84.11%, which was high- er than 1 000-fold dilution of 1 000×10^8 cfu/g Bacillus subti/i wettable powder (the control efficiency was 64.60%) and 2 000-fold dilution of 250 g/L Bacillus subti/i wettable powder (the control efficiency was 81.07%). In addition, each treatment al- so had better control efficiency to other cluster diseases, such as white rot, etc., and the control efficiency was almost the same as that of anthracnose. [Conclusion] It was suggested that the prevention concentration of 20% pyraclostrobin .200×10^8 cfu/g Bacillus subtili wettable powder to grape anthracnose after fruit setting and before bagging was 1 000-fold - 2 000-fold dilution.展开更多
[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei ho...[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.展开更多
The impact of the adaptive cruise control( ACC)system on improving fuel efficiency is evaluated based on the vehicle-specific power. The intelligent driver model was first modified to simulate the ACC system and it ...The impact of the adaptive cruise control( ACC)system on improving fuel efficiency is evaluated based on the vehicle-specific power. The intelligent driver model was first modified to simulate the ACC system and it was calibrated by using empirical traffic data. Then, a five-step procedure based on the vehicle-specific power was introduced to calculate fuel efficiency. Five scenarios with different ACC ratios were tested in simulation experiments, and sensitivity analyses of two key ACC factors affecting the perception-reaction time and time headway were also conducted. The simulation results indicate that all the scenarios with ACC vehicles have positive impacts on reducing fuel consumption. Furthermore, from the perspective of fuel efficiency, the extremely small value of the perception-reaction time of the ACC system is not necessary due to the fact that the value of 0.5 and 0.1 s can almost lead to the same reduction in fuel consumption. Finally, the designed time headway of the ACC system is also proposed to be large enough for fuel efficiency, although its small value can increase capacity. The findings of this study provide useful information for connected vehicles and autonomous vehicle manufacturers to improve fuel efficiency on roadways.展开更多
The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yi...The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yield and nitrogen efficiency of summer maize. Six treatments included CK (with no application of N), CNIO0% splits (CN), CRFIO0% (CRN1), CRN60%+CN40% (CRN2), CRN85% (CRN3) and CRN70% (CRN4). The results showed proper CRN increased yields and output val- ue. Compared with CN, CRN2 significantly increased by 13.74%, CRN1 increased by 4.84%, and CRN3 was equal to CN. CRN increased yield by grain number per spike of yield components. CRN2 had the highest apparent nitrogen fertilizer recov- ery efficiency and CRN1 was the second, which were significantly higher than CN. Nitrogen agronomic efficiency of CRN2 was significantly higher than CN. Nitrogen physiological efficiency of CRN2 was higher than CN. The partial productivity of CRN1 was higher than that with CN. And the effect of nitrogen fertilizer of CRN2 was the highest, which was increased 758 yuan/hm2. Considering yield, nitrogen use efficiency and economic benefit, applying the mixture of CRN and CN was the most beneficial treatment. CRN1 was the second treatment, and CRN3 didn't reduce yield.展开更多
Field trials on a silt-loamy paddy soil derived from shallow-sea deposit in direct seeding rice fields were conducted in Zhejiang, China, in 1996 to compare N efficiency of controlled release fertilizers (LP fertilize...Field trials on a silt-loamy paddy soil derived from shallow-sea deposit in direct seeding rice fields were conducted in Zhejiang, China, in 1996 to compare N efficiency of controlled release fertilizers (LP fertilizers) with the conventional urea. Six treatments including CK (no N fertilizer), conventional urea and different types of LP fertilizers at different rates were designed for two succeeding crops of early and late rice. A blend of different types of LP fertilizers as a single preplant "co-situs" application released N in a rate and amount synchronizing with uptake pattern of direct seeding rice. A single preplant application of the LP fertilizers could meet the N requirement of rice for the whole growth period without need of topdressing. Using LP fertilizer blends, equivalent grain yields could be maintained even if the N fertilization rates were reduced by 25%~50% compared with the conventional urea. Agronomic efficiency of the LP fertilizers was 13.6%~ 86.4% higher than that of the conventional urea in early rice and 100%~164.1% in late rice, depending on the amounts of the LP fertilizers applied. N fertilizer recovery rate increased from 27.4% for the conventional application of urea to 41.7%~54.l% for the single preplant "co-situs" application of the LP fertilizers. Use of the LP fertilizers was promising if the increase in production costs due to the high LP fertilizer prices could be compensated by increase in yield and N efficiency, reduction in labor costs and improvement in environment.展开更多
In this study, toxicity and control efficiency of three nicotine biopesticides against pomegranate aphids were determined via indoor toxicity test and field effica- cy test, aiming at screening the appropriate reagent...In this study, toxicity and control efficiency of three nicotine biopesticides against pomegranate aphids were determined via indoor toxicity test and field effica- cy test, aiming at screening the appropriate reagent for prevention and control of pomegranate aphids. The results of indoor toxicity test showed that LC^o of reagent 1, reagent 2 and reagent 3 reached 10 270, 12 810 and 13 040 mg/L, respectively. The results of field efficacy test showed that control efficacy of reagent 1, reagent 2 and reagent 3 reached 60.52%, 34.60% and 46.99%, respectively. Overall, reagent 1 (91% ultrafine powder of tobacco leaves, 3% silicone oil, 2% sasangua cake, 2% emulsifier, 2% ascorbic acid) exhibited the highest control efficiency against pomegranate aphids, which can be further popularized and utilized.展开更多
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure...We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.展开更多
The efficiency of any energy system can be charaterised by the relevant efficiency components in terms of performance, operation, equipment and technology(POET). The overall energy efficiency of the system can be opti...The efficiency of any energy system can be charaterised by the relevant efficiency components in terms of performance, operation, equipment and technology(POET). The overall energy efficiency of the system can be optimised by studying the POET energy efficiency components. For an existing energy system, the improvement of operation efficiency will usually be a quick win for energy efficiency. Therefore, operation efficiency improvement will be the main purpose of this paper. General procedures to establish operation efficiency optimisation models are presented. Model predictive control, a popular technique in modern control theory, is applied to solve the obtained energy models. From the case studies in water pumping systems, model predictive control will have a prosperous application in more energy efficiency problems.展开更多
We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs...We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs) could impede the hole injection and facilitate the electron transport, which can improve the carrier balance and further expand the exciton generation region. The maximal current efficiency of the optimal device is 5.89 cd/A at 1.81 mA/cm2 , which is about 2.19 times higher than that of the control device (CD) without the CCL, and the maximal luminance is 19.660 cd/m2 at 12V. The device shows a good color stability though the green light emitting material Alq3 is introduced as the CCL in the EML, but it has a poor lifetime due to the formation of cationic Alq3 species.展开更多
Field experiment was conducted during kharif 2009 and rabi 2009-2010 at Tamil Nadu Agricultural University, Coimbatore to evaluate the weed control efficiency and yield potential of glyphosate resistant transgenic mai...Field experiment was conducted during kharif 2009 and rabi 2009-2010 at Tamil Nadu Agricultural University, Coimbatore to evaluate the weed control efficiency and yield potential of glyphosate resistant transgenic maize. Treatments consisted of two transgenic maize hybrids named Hishell and 900 M gold with application of glyphosate as post emergence at 900, 1800 and 3600 g a.e/hathese were compared with non-transgenic counterpart maize hybrids with application of atrazine as pre-emergence at 0.5 kg/ha followed by one hand weeding at 40 Days After Sowing along with need based insect control practices. Post emergence application of glyphosate at 900, 1800 and 3600 g a.e/ha in transgenic maize hybrids was recorded with lower weed density and higher weed control efficiency compared to other treatments. Higher grain yield was recorded with post emergence application of glyphosate at 1800 g a.e/ha in transgenic hybrid 900 M Gold and 3600 g a.e/ha in transgenic hybrid Hishell during kharif 2009 and rabi 2009-2010 seasons, respectively.展开更多
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金supported by the Key R&D Plan of Hubei Province,China(2022BBA002)the Carbon Account Accounting and Carbon Reduction and Sequestration Technology Research of Quzhou City of China(2022-31).
文摘Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.
基金Supported by National High Technology Research and Development Program of China(863 Program,Grant No.2015AA042503)K.C.Wong Education Foundation.
文摘Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
基金supported by the Key Technology Research and Application Demonstration Project for Large-Scale Multi-Scenario Water Electrolysis Hydrogen Production(CTGTC/2023-LQ-06).
文摘The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy.
基金supported by the National Key R&D Program of China(2022YFB4300500).
文摘The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
文摘In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,and the speed control model is proposed from the perspective of vehicles themselves,to obtain a stable fleet with the same distance and speed.However,in this process,the initial condition of the vehicle,the traffic flow environment,and the efficiency of the fleet formation are less considered.Therefore,based on summarizing the existing fleet building model,this paper puts forward the rapid construction model and algorithm of a cooperative adaptive cruise control platoon fleet.One of the important goals of forming a team is to enter the team with the smoothest trajectory in the shortest time.Therefore,this chapter studies the trajectory optimization of the vehicle formation process from the perspective of vehicle dynamics.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金Supported by the Independent Innovation Fund Project of Agricultural Science and Technology in Jiangsu Province[CX(14)2056]Agricultural Science&Technology Supporting Program of Zhenjiang City(NY2014005)Science and Technology Innovation Items of Jurong City(NY2013026)~~
文摘[Objective] To screen out the biological compound bactericides for grape anthracnose, reduce and replace the use of chemical pesticide. [Methods] The de- termination on the indoor bacteriostatic activity of different proportions of Bacillus subtilis and pyraclostrobin to grape anthracnose was carried out, and mycelial growth rate method was adopted to determine the toxicity of Bacillus subtilis and pyraclostrobin as well as their 5 mixtures to grape anthracnose. [Results] The EC50 of Bacillus subtilis and pyraclostrobin as well as their mixture combinations of 1:1, 1:2, 1:3, 1:4 and 1:5 to grape anthracnose were respectively 1.969 8, 1.527 4, 1.373 2, 1.294 8 and 1.247 3 μg/ml; the synergistic coefficients (SR) of the 5 mix- ture combinations to grape anthracnose were 1.70, 1.25, 1.13, 1.12 and 1.12, re- spectively, in which the synergistic effect of 1:1 was the largest. The indoor biologi- cal activity of pyraclostrobin(EC50 was 1.054 0μg/ml) was higher than that of Bacil- lus subtilis(EC50 was 15.017 5 μg/ml). 50 d after the agentia(before the harvesting), the investigation results showed that 1 000-fold dilution, 1 500-fold dilution and 2 000- fold dilution as well as each single dosage of 20% pyraclostrobin .200×10^8 cfu/g Bacillus subtili wettable powder all had better control efficiency to grape anthracnose after fruit setting and before bagging, in which the treatments of high concentration and middle concentration were higher than the treatments of low concentration and two single dosages: the highest control efficiency of high concentration was 90.03%, which was higher than all other treatments; the control efficiency of middle concen- tration was 87.01%, which was higher than that of low concentration and each sin- gle dosage; the control efficiency of low concentration was 84.11%, which was high- er than 1 000-fold dilution of 1 000×10^8 cfu/g Bacillus subti/i wettable powder (the control efficiency was 64.60%) and 2 000-fold dilution of 250 g/L Bacillus subti/i wettable powder (the control efficiency was 81.07%). In addition, each treatment al- so had better control efficiency to other cluster diseases, such as white rot, etc., and the control efficiency was almost the same as that of anthracnose. [Conclusion] It was suggested that the prevention concentration of 20% pyraclostrobin .200×10^8 cfu/g Bacillus subtili wettable powder to grape anthracnose after fruit setting and before bagging was 1 000-fold - 2 000-fold dilution.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest from Ministry of Agriculture(200903025-05)Fund from Kunming Municipal Science and Technology Committee(08S010201)~~
文摘[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.
基金The National Natural Science Foundation of China(No.51338003,51478113,51378120)
文摘The impact of the adaptive cruise control( ACC)system on improving fuel efficiency is evaluated based on the vehicle-specific power. The intelligent driver model was first modified to simulate the ACC system and it was calibrated by using empirical traffic data. Then, a five-step procedure based on the vehicle-specific power was introduced to calculate fuel efficiency. Five scenarios with different ACC ratios were tested in simulation experiments, and sensitivity analyses of two key ACC factors affecting the perception-reaction time and time headway were also conducted. The simulation results indicate that all the scenarios with ACC vehicles have positive impacts on reducing fuel consumption. Furthermore, from the perspective of fuel efficiency, the extremely small value of the perception-reaction time of the ACC system is not necessary due to the fact that the value of 0.5 and 0.1 s can almost lead to the same reduction in fuel consumption. Finally, the designed time headway of the ACC system is also proposed to be large enough for fuel efficiency, although its small value can increase capacity. The findings of this study provide useful information for connected vehicles and autonomous vehicle manufacturers to improve fuel efficiency on roadways.
基金Supported by National Science and Technology Major Project(2015ZX07204-007)Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province(1606c08231)Special Fund for Agro-scientific Research in the Public Interest(201503122)~~
文摘The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yield and nitrogen efficiency of summer maize. Six treatments included CK (with no application of N), CNIO0% splits (CN), CRFIO0% (CRN1), CRN60%+CN40% (CRN2), CRN85% (CRN3) and CRN70% (CRN4). The results showed proper CRN increased yields and output val- ue. Compared with CN, CRN2 significantly increased by 13.74%, CRN1 increased by 4.84%, and CRN3 was equal to CN. CRN increased yield by grain number per spike of yield components. CRN2 had the highest apparent nitrogen fertilizer recov- ery efficiency and CRN1 was the second, which were significantly higher than CN. Nitrogen agronomic efficiency of CRN2 was significantly higher than CN. Nitrogen physiological efficiency of CRN2 was higher than CN. The partial productivity of CRN1 was higher than that with CN. And the effect of nitrogen fertilizer of CRN2 was the highest, which was increased 758 yuan/hm2. Considering yield, nitrogen use efficiency and economic benefit, applying the mixture of CRN and CN was the most beneficial treatment. CRN1 was the second treatment, and CRN3 didn't reduce yield.
文摘Field trials on a silt-loamy paddy soil derived from shallow-sea deposit in direct seeding rice fields were conducted in Zhejiang, China, in 1996 to compare N efficiency of controlled release fertilizers (LP fertilizers) with the conventional urea. Six treatments including CK (no N fertilizer), conventional urea and different types of LP fertilizers at different rates were designed for two succeeding crops of early and late rice. A blend of different types of LP fertilizers as a single preplant "co-situs" application released N in a rate and amount synchronizing with uptake pattern of direct seeding rice. A single preplant application of the LP fertilizers could meet the N requirement of rice for the whole growth period without need of topdressing. Using LP fertilizer blends, equivalent grain yields could be maintained even if the N fertilization rates were reduced by 25%~50% compared with the conventional urea. Agronomic efficiency of the LP fertilizers was 13.6%~ 86.4% higher than that of the conventional urea in early rice and 100%~164.1% in late rice, depending on the amounts of the LP fertilizers applied. N fertilizer recovery rate increased from 27.4% for the conventional application of urea to 41.7%~54.l% for the single preplant "co-situs" application of the LP fertilizers. Use of the LP fertilizers was promising if the increase in production costs due to the high LP fertilizer prices could be compensated by increase in yield and N efficiency, reduction in labor costs and improvement in environment.
文摘In this study, toxicity and control efficiency of three nicotine biopesticides against pomegranate aphids were determined via indoor toxicity test and field effica- cy test, aiming at screening the appropriate reagent for prevention and control of pomegranate aphids. The results of indoor toxicity test showed that LC^o of reagent 1, reagent 2 and reagent 3 reached 10 270, 12 810 and 13 040 mg/L, respectively. The results of field efficacy test showed that control efficacy of reagent 1, reagent 2 and reagent 3 reached 60.52%, 34.60% and 46.99%, respectively. Overall, reagent 1 (91% ultrafine powder of tobacco leaves, 3% silicone oil, 2% sasangua cake, 2% emulsifier, 2% ascorbic acid) exhibited the highest control efficiency against pomegranate aphids, which can be further popularized and utilized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10674047,10804031,10904037,10904060,10974055,11034002,and61205198)the National Key Basic Research and Development Program of China(Grant Nos.2006CB921604 and 2011CB921602)+2 种基金the Basic Key Program of Shanghai Municipality,China(Grant No.07JC14017)the Fundamental Research Funds for the Central Universitiesthe Shanghai Leading Academic Discipline Project,China(Grant No.B408)
文摘We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.
基金supported by National Research Foundation of South Africa(UID85783)the National Hub for Energy Efficiency and Demand Side Management and Exxaro
文摘The efficiency of any energy system can be charaterised by the relevant efficiency components in terms of performance, operation, equipment and technology(POET). The overall energy efficiency of the system can be optimised by studying the POET energy efficiency components. For an existing energy system, the improvement of operation efficiency will usually be a quick win for energy efficiency. Therefore, operation efficiency improvement will be the main purpose of this paper. General procedures to establish operation efficiency optimisation models are presented. Model predictive control, a popular technique in modern control theory, is applied to solve the obtained energy models. From the case studies in water pumping systems, model predictive control will have a prosperous application in more energy efficiency problems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60676051)the Natural Science Foundation of Tianjin,China (Grant No. 10JCYBJC01100)+2 种基金the Scientific Developing Foundation of Tianjin Education Commission, China (Grant No. 2011ZD02)the Jiangsu Provincial Natural Science Development Foundation for University, China (Grant No. 09KJB140006)the Tianjin Natural Science Council (Grant No. 10SYSYJC28100)
文摘We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs) could impede the hole injection and facilitate the electron transport, which can improve the carrier balance and further expand the exciton generation region. The maximal current efficiency of the optimal device is 5.89 cd/A at 1.81 mA/cm2 , which is about 2.19 times higher than that of the control device (CD) without the CCL, and the maximal luminance is 19.660 cd/m2 at 12V. The device shows a good color stability though the green light emitting material Alq3 is introduced as the CCL in the EML, but it has a poor lifetime due to the formation of cationic Alq3 species.
文摘Field experiment was conducted during kharif 2009 and rabi 2009-2010 at Tamil Nadu Agricultural University, Coimbatore to evaluate the weed control efficiency and yield potential of glyphosate resistant transgenic maize. Treatments consisted of two transgenic maize hybrids named Hishell and 900 M gold with application of glyphosate as post emergence at 900, 1800 and 3600 g a.e/hathese were compared with non-transgenic counterpart maize hybrids with application of atrazine as pre-emergence at 0.5 kg/ha followed by one hand weeding at 40 Days After Sowing along with need based insect control practices. Post emergence application of glyphosate at 900, 1800 and 3600 g a.e/ha in transgenic maize hybrids was recorded with lower weed density and higher weed control efficiency compared to other treatments. Higher grain yield was recorded with post emergence application of glyphosate at 1800 g a.e/ha in transgenic hybrid 900 M Gold and 3600 g a.e/ha in transgenic hybrid Hishell during kharif 2009 and rabi 2009-2010 seasons, respectively.