H-infinity control problem for linear discrete-time systems with instantaneous and delayed measurements is studied. A necessary and sufficient condition for the existence of the H-infinity controller is derived by app...H-infinity control problem for linear discrete-time systems with instantaneous and delayed measurements is studied. A necessary and sufficient condition for the existence of the H-infinity controller is derived by applying reorganized innovation analysis approach in Krein space. The measurement-feedback controller is designed by performing two Riccati equations. The presented approach does not require the state augmentation.展开更多
This paper presents a study on the problem of non-fragile state feedback H-infinity controller design for linear discrete-time systems with quantized signals. The quantizers considered here are dynamic and time-varyin...This paper presents a study on the problem of non-fragile state feedback H-infinity controller design for linear discrete-time systems with quantized signals. The quantizers considered here are dynamic and time-varying. With the consideration of controller gain variations and quantized signals at the same time, a new non-fragile H-infinity control strategy is proposed with updating quantizer's parameters, such that the quantized closed-loop system is asymptotically stable and with a prescribed H-infinity performance bound. An example is presented to illustrate the effectiveness of the proposed control strategy.展开更多
The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bo...The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bounded uncertainties respectively.The basic idea of the proposed approaches is to construct piecewise-quadratic (PWQ) Lyapunov functions to guarantee the stability of the closed-loop systems.The partition information of the PWA systems is taken into account and each polytopic operating region is outer approximated by an ellipsoid,then sufficient conditions for the robust stabilization are derived and expressed as a set of linear matrix inequalities (LMIs).Two examples are given to illustrate the proposed theoretical results.展开更多
Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By app...Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.展开更多
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, ...This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.展开更多
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining...A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.展开更多
This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a pr...This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time.Based on the estimates,each agent designs the consensus control with a constant gain at some skipping time.The states of the system are updated by the designed control,and the estimation and control design will be repeated.For the estimation,the projected empirical measure method is proposed for the binary-valued observations.The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time(the same order as that in the case of accurate outputs).For the consensus control,a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations.And,there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’states.Finally,the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature.Simulations are given to demonstrate the theoretical results.展开更多
A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,whic...A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.展开更多
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear...The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
This paper discusses discrete-time stochastic linear quadratic (LQ) problem in the infinite horizon with state and control dependent noise, where the weighting matrices in the cost function are assumed to be indefin...This paper discusses discrete-time stochastic linear quadratic (LQ) problem in the infinite horizon with state and control dependent noise, where the weighting matrices in the cost function are assumed to be indefinite. The problem gives rise to a generalized algebraic Riccati equation (GARE) that involves equality and inequality constraints. The well-posedness of the indefinite LQ problem is shown to be equivalent to the feasibility of a linear matrix inequality (LMI). Moreover, the existence of a stabilizing solution to the GARE is equivalent to the attainability of the LQ problem. All the optimal controls are obtained in terms of the solution to the GARE. Finally, we give an LMI -based approach to solve the GARE via a semidefinite programming.展开更多
A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state fee...A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state feedback control law, such that, the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties under the constructed switching rule. A sufficient condition for the existence of guaranteed cost controllers and switching rules is derived based on the Lyapunov theory together with the linear matrix inequality (LMI) approach. Furthermore, a convex optimization problem with LMI constraints is formulated to select the suboptimal guaranteed cost controller. A numerical example demonstrates the validity of the proposed design approach.展开更多
In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estim...In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.展开更多
This paper deals with delay-dependent robust H-infinity control for uncertain discrete-time systems with interval time-varying delay. By using a new Lyapunov functional and the convex combination method, a new delay-d...This paper deals with delay-dependent robust H-infinity control for uncertain discrete-time systems with interval time-varying delay. By using a new Lyapunov functional and the convex combination method, a new delay-dependent stability criterion is established. Some redundant variable matrices are removed in the new conditions, which makes the obtained results more efficient. Then, an iterative algorithm based on the cone complementarity Linearization method is proposed to obtain the delay-dependent robust H-infinity controller. Numerical examples are given to show the effectiveness of the proposed method.展开更多
The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of...The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.展开更多
Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assu...Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our des...The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our designed adaptive control law, the unknown time-delay parameter is included in memory state feedback controller. Using LMI technique, delay-dependent sufficient conditions for the existence of the feedback controller are obtained. Finally, the effectiveness of the proposed design method is demonstrated by a numerical example.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.60174017) the National Outstanding Youth Science Foundation of China(No.69925308).
文摘H-infinity control problem for linear discrete-time systems with instantaneous and delayed measurements is studied. A necessary and sufficient condition for the existence of the H-infinity controller is derived by applying reorganized innovation analysis approach in Krein space. The measurement-feedback controller is designed by performing two Riccati equations. The presented approach does not require the state augmentation.
基金supported by the Funds for Creative Research Groups of China (No.60521003)the State Key Program of National Natural Science of China (No.60534010)+2 种基金the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China(No.20060145019)the 111 Project (B08015)
文摘This paper presents a study on the problem of non-fragile state feedback H-infinity controller design for linear discrete-time systems with quantized signals. The quantizers considered here are dynamic and time-varying. With the consideration of controller gain variations and quantized signals at the same time, a new non-fragile H-infinity control strategy is proposed with updating quantizer's parameters, such that the quantized closed-loop system is asymptotically stable and with a prescribed H-infinity performance bound. An example is presented to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Science Fund of China for Distinguished Young Scholars(No.60725311)
文摘The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bounded uncertainties respectively.The basic idea of the proposed approaches is to construct piecewise-quadratic (PWQ) Lyapunov functions to guarantee the stability of the closed-loop systems.The partition information of the PWA systems is taken into account and each polytopic operating region is outer approximated by an ellipsoid,then sufficient conditions for the robust stabilization are derived and expressed as a set of linear matrix inequalities (LMIs).Two examples are given to illustrate the proposed theoretical results.
基金This work was supported by the National Natural Science Foundation of China (No.60274099) and the Foundation of Key Laboratory of Process Industry Automation, Ministry of Education
文摘Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.
基金supported by the Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundation under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A61001National Basic Research Program of China (973 Program 2007CB814800)Programme for Changjiang Scholars and Innovative Research Team in University (IRT0734)K.C.Wong Magna Fund in Ningbo University
文摘This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
基金This work is supported by the National Natural Science Foundation of China (No.60421002) Priority supported financially by the New Century 151 Talent Project of Zhejiang Province.
文摘A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
基金supported by the National Natural Science Foundation of China(61803370,61622309)the China Postdoctoral Science Foundation(2018M630216)the National Key Research and Development Program of China(2016YFB0901902)
文摘This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time.Based on the estimates,each agent designs the consensus control with a constant gain at some skipping time.The states of the system are updated by the designed control,and the estimation and control design will be repeated.For the estimation,the projected empirical measure method is proposed for the binary-valued observations.The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time(the same order as that in the case of accurate outputs).For the consensus control,a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations.And,there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’states.Finally,the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature.Simulations are given to demonstrate the theoretical results.
基金Project(50721063) supported by the National Natural Science Foundation of China
文摘A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.
基金This work was partially supported by RGC Grant 7103/01P and the open project of the state key Laboratory of intelligent and Systems,Tsinghua University(No.0406).
文摘The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
基金supported by the National Natural Science Foundation of China(Nos.61174078,61170054,61402265)the Research Fund for the Taishan Scholar Project of Shandong Province of China
文摘This paper discusses discrete-time stochastic linear quadratic (LQ) problem in the infinite horizon with state and control dependent noise, where the weighting matrices in the cost function are assumed to be indefinite. The problem gives rise to a generalized algebraic Riccati equation (GARE) that involves equality and inequality constraints. The well-posedness of the indefinite LQ problem is shown to be equivalent to the feasibility of a linear matrix inequality (LMI). Moreover, the existence of a stabilizing solution to the GARE is equivalent to the attainability of the LQ problem. All the optimal controls are obtained in terms of the solution to the GARE. Finally, we give an LMI -based approach to solve the GARE via a semidefinite programming.
基金This project was supported by a Program for Changjiang Scholars and an Innovative Research Team in the University and the National Natural Science Foundation of P. R. China (60474015).
文摘A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state feedback control law, such that, the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties under the constructed switching rule. A sufficient condition for the existence of guaranteed cost controllers and switching rules is derived based on the Lyapunov theory together with the linear matrix inequality (LMI) approach. Furthermore, a convex optimization problem with LMI constraints is formulated to select the suboptimal guaranteed cost controller. A numerical example demonstrates the validity of the proposed design approach.
基金supported by National Natural Science Foundationof China (No. 60850004)
文摘In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 61174140)the Scientific Research Fund of Hunan Provincial Education Department (No. 07C264)
文摘This paper deals with delay-dependent robust H-infinity control for uncertain discrete-time systems with interval time-varying delay. By using a new Lyapunov functional and the convex combination method, a new delay-dependent stability criterion is established. Some redundant variable matrices are removed in the new conditions, which makes the obtained results more efficient. Then, an iterative algorithm based on the cone complementarity Linearization method is proposed to obtain the delay-dependent robust H-infinity controller. Numerical examples are given to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No.60874007)
文摘The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.
基金supported by National Natural Science Foundation of China(61573200,61973175)the Fundamental Research Funds for the Central Universities,Nankai University(63201196)。
文摘Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
基金supported by the National Natural Science Foundation of China (60574006 60804017+2 种基金 608350017)the Foundation of Doctor(20060286039)the Jiangsu Provincal Sustentation Fund of Recruiting Post Doctor(1660631171)
文摘The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our designed adaptive control law, the unknown time-delay parameter is included in memory state feedback controller. Using LMI technique, delay-dependent sufficient conditions for the existence of the feedback controller are obtained. Finally, the effectiveness of the proposed design method is demonstrated by a numerical example.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.