A high-performance vibration isolation platform (VIP) has been developed for a cluster of control moment gyroscopes (CMGs). CMGs have long been used for satellite attitude control. In this paper, the influence of ...A high-performance vibration isolation platform (VIP) has been developed for a cluster of control moment gyroscopes (CMGs). CMGs have long been used for satellite attitude control. In this paper, the influence of flexible solar arrays on a passive multi-strut VIP of CMGs for a satellite is analyzed. The reasonable parameters design of flexi- ble solar arrays is discussed. Firstly, the dynamic model of the integrated satellite with flexible solar arrays, the VIP and CMGs is conducted by Newton-Euler method. Then based on reasonable assumptions, the transmissibility matrix of the VIP is derived. Secondly, the influences of the flexible solar arrays on both the performance of the VIP and the stability of closed-loop control systems are analyzed in detail. The parameter design limitation of these solar arrays is discussed. At last, by selecting reasonable parameters for both the VIP and flexible solar arrays, the attitude stabilization performance with vibration isolation system is predicted via simulation.展开更多
In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematica...In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematical model is constructed by taking the spacecraft and the gyroscopes together as an integrated system, with the coupling interaction between them considered. To overcome the singular issues of the VSCMGs due to the conventional torque-based method, the first-order derivative of gimbal rates and the second-order derivative of the rotor spinning velocity, instead of the gyroscope torques, are taken as input variables. Moreover, taking external disturbances into account, a feedback control law is designed for the system based on a method of nonlinear model predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by using the proposed controller in this paper.展开更多
An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with th...An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with three degrees of freedom (DOF). A cluster of control moment gyroscopes (CMGs) is mounted on each link and the base to actuate the system. The modified Rodrigues parameters (MRPs) are employed to describe the angular displacements, and the equations of motion are derived using Kane's equations. The controller for each link or the base is designed sep- arately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and nonlinear uncertainties are classified as a "lumped" matched uncertainty with unknown upper bound, and a continuous sliding mode control (SMC) law is proposed, in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A gen- eral amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input. Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov's method. Simulation results based on a three-link system verify the effectiveness of the proposed controller.展开更多
Keeping balance in movement is an important premise for biped robots to complete various tasks.Now,the balance control of biped robots mainly depends on the cooperation of various joints of the robot's body.When r...Keeping balance in movement is an important premise for biped robots to complete various tasks.Now,the balance control of biped robots mainly depends on the cooperation of various joints of the robot's body.When robots move faster,the adjustment allowance of joints is reduced,and the robot's anti-disturbance ability will inevitably decline.To solve this problem,the control moment gyroscope(CMG)is creatively used as an auxiliary stabilisation device for fully actuated biped robots and the CMG assistance strategy,which can be integrated into the biped's balance control framework,is proposed.This strategy includes model predictive control module,distribution module,and CMG precession controller.Under the command of it,CMGs can effectively assist the robot in resisting impact and returning to initial positions in time.The results of anti-impact simulation on the walking and running biped robot prove that,with the help of CMGs,the robot's ability to resist disturbance and remain stable is significantly improved.The cover image is based on the Original Article Disturbance rejection for biped robots during walking and running using control moment gyroscopes by Haochen Xu et al.,https://doi.org/10.1049/csy2.12070.展开更多
Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace f...Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.展开更多
Spacecraft require a large-angle manoeuvre when performing agile manoeuvring tasks, therefore a control moment gyroscope(CMG) is employed to provide a strong moment.However, the control of the CMG system easily falls ...Spacecraft require a large-angle manoeuvre when performing agile manoeuvring tasks, therefore a control moment gyroscope(CMG) is employed to provide a strong moment.However, the control of the CMG system easily falls into singularity, which renders the actuator unable to output the required moment. To solve the singularity problem of CMGs, the control law design of a CMG system based on a cooperative game is proposed. First, the cooperative game model is constructed according to the quadratic programming problem, and the cooperative strategy is constructed. When the strategy falls into singularity, the weighting coefficient is introduced to carry out the strategy game to achieve the optimal strategy. In theory, it is proven that the cooperative game manipulation law of the CMG system converges, the sum of the CMG frame angular velocities is minimized, the energy consumption is small, and there is no output torque error. Then, the CMG group system is simulated.When the CMG system is near the singular point, it can quickly escape the singularity. When the CMG system falls into the singularity, it can also escape the singularity. Considering the optimization of angular momentum and energy consumption, the feasibility of the CMG system steering law based on a cooperative game is proven.展开更多
Control moment gyroscope(CMG)is a typical attitude control system component for satellites and mobile robots,and the online fault diagnosis of CMG is crucial because it determines the stability and accuracy of the att...Control moment gyroscope(CMG)is a typical attitude control system component for satellites and mobile robots,and the online fault diagnosis of CMG is crucial because it determines the stability and accuracy of the attitude control system.This paper develops a data-driven CMG fault diagnosis scheme based on a new CNN method.In this design,seven types of fault signals are converted into spectrum datasets through short-time Fourier transformation(STFT),and a new CNN network scheme called AECB-CNN is proposed based on attention-enhanced convolutional blocks(AECB).AECB-CNN can achieve high training accuracy for the CMG fault diagnosis datasets under different sliding window parameters.Finally,simulation results indicate that the proposed fault diagnosis method can achieve an accuracy of nearly 95%in 1.28 s and 100%in 2.56 s,respectively.展开更多
In this paper,a general recursive formulation of equations of motion is presented for open-loop gyroelastic multibody systems.The gyroelastic multibody system is defined as a multibody system with gyroelastic bodies,w...In this paper,a general recursive formulation of equations of motion is presented for open-loop gyroelastic multibody systems.The gyroelastic multibody system is defined as a multibody system with gyroelastic bodies,whereas a gyroelastic body is composed of a flexible body with a cluster of double-gimbal variable-speed control moment gyroscopes(DGVs).First,the motion equations of a single gyroelastic body are derived using Kane’s method.The influence of DGVs on the static moments,modal momentum coefficients,moments of inertia,modal angular momentum coefficients,and modal mass matrix for a flexible body are considered.The interactions between the DGVs and the flexibilities of the structures are captured.The recursive kinematic relations for a multibody system with different connections are then obtained from a flexible-flexible connection using a transformation matrix.The different connections contain a flexible-flexible connection,which represents a flexible body connecting to another flexible body,flexible-rigid and rigid-rigid connections.The recursive gyroelastic multibody dynamics are obtained by analyzing the kinematics of a multibody system and the dynamics of a single gyroelastic body.Numerical simulations are presented to verify the accuracy and efficiency of the proposed approach by comparing it with a direct formulation based on Kane’s method.展开更多
In order to visualize singularity of SGCMGs in gimbal angle space,a novel continuous bounded singularity parameter--Singularity Radius,whose sign can distinctly determine singularity type,is proposed.Then a rapid sing...In order to visualize singularity of SGCMGs in gimbal angle space,a novel continuous bounded singularity parameter--Singularity Radius,whose sign can distinctly determine singularity type,is proposed.Then a rapid singularity-escape steering law is proposed basing on gradient of Singularity Radius and residual base vector to drive the SGCMG system to neighboring singular boundary,and quickly escape elliptic singularities.Finally,simulation results on Pyramid-type and skew-type configuration demonstrate the effectiveness and rapidness of the proposed steering law.展开更多
文摘A high-performance vibration isolation platform (VIP) has been developed for a cluster of control moment gyroscopes (CMGs). CMGs have long been used for satellite attitude control. In this paper, the influence of flexible solar arrays on a passive multi-strut VIP of CMGs for a satellite is analyzed. The reasonable parameters design of flexi- ble solar arrays is discussed. Firstly, the dynamic model of the integrated satellite with flexible solar arrays, the VIP and CMGs is conducted by Newton-Euler method. Then based on reasonable assumptions, the transmissibility matrix of the VIP is derived. Secondly, the influences of the flexible solar arrays on both the performance of the VIP and the stability of closed-loop control systems are analyzed in detail. The parameter design limitation of these solar arrays is discussed. At last, by selecting reasonable parameters for both the VIP and flexible solar arrays, the attitude stabilization performance with vibration isolation system is predicted via simulation.
基金supported by the National Natural Science Foundation of China(Nos.11372130,11290153,and 11290154)
文摘In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematical model is constructed by taking the spacecraft and the gyroscopes together as an integrated system, with the coupling interaction between them considered. To overcome the singular issues of the VSCMGs due to the conventional torque-based method, the first-order derivative of gimbal rates and the second-order derivative of the rotor spinning velocity, instead of the gyroscope torques, are taken as input variables. Moreover, taking external disturbances into account, a feedback control law is designed for the system based on a method of nonlinear model predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by using the proposed controller in this paper.
基金supported by the National Natural Science Foundation of China(No.11272027)
文摘An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with three degrees of freedom (DOF). A cluster of control moment gyroscopes (CMGs) is mounted on each link and the base to actuate the system. The modified Rodrigues parameters (MRPs) are employed to describe the angular displacements, and the equations of motion are derived using Kane's equations. The controller for each link or the base is designed sep- arately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and nonlinear uncertainties are classified as a "lumped" matched uncertainty with unknown upper bound, and a continuous sliding mode control (SMC) law is proposed, in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A gen- eral amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input. Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov's method. Simulation results based on a three-link system verify the effectiveness of the proposed controller.
基金National Natural Science Foundation of China,Grant/Award Numbers:No.61973039,No.62073041‘111’Project,Grant/Award Number:B08043。
文摘Keeping balance in movement is an important premise for biped robots to complete various tasks.Now,the balance control of biped robots mainly depends on the cooperation of various joints of the robot's body.When robots move faster,the adjustment allowance of joints is reduced,and the robot's anti-disturbance ability will inevitably decline.To solve this problem,the control moment gyroscope(CMG)is creatively used as an auxiliary stabilisation device for fully actuated biped robots and the CMG assistance strategy,which can be integrated into the biped's balance control framework,is proposed.This strategy includes model predictive control module,distribution module,and CMG precession controller.Under the command of it,CMGs can effectively assist the robot in resisting impact and returning to initial positions in time.The results of anti-impact simulation on the walking and running biped robot prove that,with the help of CMGs,the robot's ability to resist disturbance and remain stable is significantly improved.The cover image is based on the Original Article Disturbance rejection for biped robots during walking and running using control moment gyroscopes by Haochen Xu et al.,https://doi.org/10.1049/csy2.12070.
基金This work was supported by the National Natural Science Foundation of China(No.62022061)Tianjin Natural Science Foundation(No.20JCYBJC00880)Beijing Key Laboratory Open Fund of Long-Life Technology of Precise Rotation and Transmission Mechanisms.
文摘Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.
基金supported by the National Natural Science Foundation of China (61973153)。
文摘Spacecraft require a large-angle manoeuvre when performing agile manoeuvring tasks, therefore a control moment gyroscope(CMG) is employed to provide a strong moment.However, the control of the CMG system easily falls into singularity, which renders the actuator unable to output the required moment. To solve the singularity problem of CMGs, the control law design of a CMG system based on a cooperative game is proposed. First, the cooperative game model is constructed according to the quadratic programming problem, and the cooperative strategy is constructed. When the strategy falls into singularity, the weighting coefficient is introduced to carry out the strategy game to achieve the optimal strategy. In theory, it is proven that the cooperative game manipulation law of the CMG system converges, the sum of the CMG frame angular velocities is minimized, the energy consumption is small, and there is no output torque error. Then, the CMG group system is simulated.When the CMG system is near the singular point, it can quickly escape the singularity. When the CMG system falls into the singularity, it can also escape the singularity. Considering the optimization of angular momentum and energy consumption, the feasibility of the CMG system steering law based on a cooperative game is proven.
基金supported by the Science Center Program of the National Natural Science Foundation of China(Grant No.62188101)the National Natural Science Foundation of China(Grant Nos.61833009,61690212,51875119,61903219,and 62073183)+2 种基金the Heilongjiang Touyan Teamthe Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)。
文摘Control moment gyroscope(CMG)is a typical attitude control system component for satellites and mobile robots,and the online fault diagnosis of CMG is crucial because it determines the stability and accuracy of the attitude control system.This paper develops a data-driven CMG fault diagnosis scheme based on a new CNN method.In this design,seven types of fault signals are converted into spectrum datasets through short-time Fourier transformation(STFT),and a new CNN network scheme called AECB-CNN is proposed based on attention-enhanced convolutional blocks(AECB).AECB-CNN can achieve high training accuracy for the CMG fault diagnosis datasets under different sliding window parameters.Finally,simulation results indicate that the proposed fault diagnosis method can achieve an accuracy of nearly 95%in 1.28 s and 100%in 2.56 s,respectively.
文摘In this paper,a general recursive formulation of equations of motion is presented for open-loop gyroelastic multibody systems.The gyroelastic multibody system is defined as a multibody system with gyroelastic bodies,whereas a gyroelastic body is composed of a flexible body with a cluster of double-gimbal variable-speed control moment gyroscopes(DGVs).First,the motion equations of a single gyroelastic body are derived using Kane’s method.The influence of DGVs on the static moments,modal momentum coefficients,moments of inertia,modal angular momentum coefficients,and modal mass matrix for a flexible body are considered.The interactions between the DGVs and the flexibilities of the structures are captured.The recursive kinematic relations for a multibody system with different connections are then obtained from a flexible-flexible connection using a transformation matrix.The different connections contain a flexible-flexible connection,which represents a flexible body connecting to another flexible body,flexible-rigid and rigid-rigid connections.The recursive gyroelastic multibody dynamics are obtained by analyzing the kinematics of a multibody system and the dynamics of a single gyroelastic body.Numerical simulations are presented to verify the accuracy and efficiency of the proposed approach by comparing it with a direct formulation based on Kane’s method.
基金funded under the National Natural Science Foundation of China(No.61873312)。
文摘In order to visualize singularity of SGCMGs in gimbal angle space,a novel continuous bounded singularity parameter--Singularity Radius,whose sign can distinctly determine singularity type,is proposed.Then a rapid singularity-escape steering law is proposed basing on gradient of Singularity Radius and residual base vector to drive the SGCMG system to neighboring singular boundary,and quickly escape elliptic singularities.Finally,simulation results on Pyramid-type and skew-type configuration demonstrate the effectiveness and rapidness of the proposed steering law.