An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The p...This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The problem of the estimation of stability for this type of process is set. The central objective is to obtain a bounded stability index expressed in terms of the Lévy-Prokhorov metric;likewise, sufficient conditions are provided for the existence of such inequalities.展开更多
In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary poli...In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary policies and for the value functions, the stability index is explicitly calculated and through statistical techniques its asymptotic behavior is investigated (using numerical experiments) when the discount coefficient approaches 1. The results obtained define the conditions under which an approximate optimal stationary policy can be used to control the original process.展开更多
L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled pro...L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.展开更多
Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and proces...Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.展开更多
As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the...As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.展开更多
This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control ...This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries.展开更多
The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and...The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process展开更多
Probabilistic Fault Recoverability(FR) property reveals the capability of a system to accommodate faults under admissible input energy constraints in the sense of satisfactory probability. Motivated by the idea of pro...Probabilistic Fault Recoverability(FR) property reveals the capability of a system to accommodate faults under admissible input energy constraints in the sense of satisfactory probability. Motivated by the idea of probabilistic control methods, a class of admissible probability density functions is designed for detailed description of fault parameters, under which several probabilistic FR conditions are established. This significantly enlarges the range of recoverable faults obtained from the deterministic FR analysis. The tradeoffs between the risk of performance degradation and this increased recoverability margin are exactly achieved by allowing a small risk of FR violation. This paper analyzes the probability FR of dynamic systems with switching and interconnection characteristics, and applies the new results to several aircraft models including single longitudinal aircraft dynamic, Highly Maneuverable Technology(HiMAT) vehicle and meta aircraft. Simulation results show the efficiency of the proposed methods based on the comparison between deterministic and probabilistic cases.展开更多
Low carbon steels microalloyed with small amount of carbide and/or nitride forming elements such as Nb,Ti and V with Thermomechanical controlled processing (TMCP) can give fine grained ferrite structure with high stre...Low carbon steels microalloyed with small amount of carbide and/or nitride forming elements such as Nb,Ti and V with Thermomechanical controlled processing (TMCP) can give fine grained ferrite structure with high strength and superior toughness.The present study was aimed at identifying rolling parameters as well as microstructural characterization for accomplishing high yield strength and high charpy impact property at-60℃ by controlling hot rolling parameters and microstructure Grain size distribution was also monitored and related to mechanical properties of steel.展开更多
A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solvin...A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.展开更多
The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts...The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts have been made to increase heterologous protein productivity by P. pastoris in recent years. When new engineered yeast strains are constructed and are ready to use tot industrial protein production, process control and optimization techniques should be applied to improve the fermentation performance in the following aspects: (1) increase recombinant cell concentrations in fermentor to high density during growth phase; (2) effectively induce heterologous proteins by enhancing/stabilizing titers or concentrations of the proteins during induction phase; (3) decrease operation costs by relieving the working loads of heat-exchange and oxygen supply. This article reviews and discusses the key and commonly used techniques in heterologous protein production by P. pastoris, with the focus on optimizations of fermentation media and basic operation conditions, development of optimal glycerol feeding strategies for achieving high density cultivation of P. pastoris and effective heterologous protein induction methods by regulating specific growth rate, methanol concentration, temperatures, mixture ratio of multi-carbon substrates, etc. Metabolic analysis for recombinant protein production by P. pastoris is also introduced to interpret the mechanism of sub-optimal heterologous protein production and to explore further optimal expression methods.展开更多
A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and ...A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.展开更多
For high-purity distillation processes,it is difficult to achieve a good direct product quality control using traditional proportional-integral-differential(PID)control or multivariable predictive control technique du...For high-purity distillation processes,it is difficult to achieve a good direct product quality control using traditional proportional-integral-differential(PID)control or multivariable predictive control technique due to some difficulties,such as long response time,many un-measurable disturbances,and the reliability and precision issues of product quality soft-sensors.In this paper,based on the first principle analysis and dynamic simulation of a distillation process,a new predictive control scheme is proposed by using the split ratio of distillate flow rate to that of bottoms as an essential controlled variable.Correspondingly,a new strategy with integrated control and on-line optimization is developed,which consists of model predictive control of the split ratio,surrogate model based on radial basis function neural network for optimization,and modified differential evolution optimization algorithm. With the strategy,the process achieves its steady state quickly,so more profit can be obtained.The proposed strategy has been successfully applied to a gas separation plant for more than three years,which shows that the strategy is feasible and effective.展开更多
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves ...Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering.展开更多
The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This pa...The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential(ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidationreduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operationalpattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.展开更多
In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the wh...In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.展开更多
Crystallization is a fundamental separation technology used for the production of particulate solids.Accurate nucleation and growth process control are vitally important but difficult.A novel controlling technology th...Crystallization is a fundamental separation technology used for the production of particulate solids.Accurate nucleation and growth process control are vitally important but difficult.A novel controlling technology that can simultaneously intensify the overall crystallization process remains a significant challenge.Membrane crystallization(MCr),which has progressed significantly in recent years,is a hybrid technology platform with great potential to address this goal.This review illustrates the basic concepts of MCr and its promising applications for crystallization control and process intensification,including a state-of-the-art review of key MCr-utilized membrane materials,process control mechanisms,and optimization strategies based on diverse hybrid membranes and crystallization processes.Finally,efforts to promote MCr technology to industrial use,unexplored issues,and open questions to be addressed are outlined.展开更多
Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were stud...Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were studied.Results showed that the coke breeze adhered with the mixture of CaO and Fe2O3 or calcium ferrite significantly lowers the NOx emission concentration and conversion ratio of fuel-N to NOx.Pretreating the coke with the mixture of lime slurry and iron ore fines helped to improve the granulation effect,and optimize the carbon distribution in granules.When the mass ratio of coke breeze,quick lime,water and iron ore fines was 2:1:1:1,the average NOx emission concentration was decreased from 220 mg/m3 to 166 mg/m3,and the conversion ratio of fuel-N was reduced from 54.2%to 40.9%.展开更多
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
文摘This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The problem of the estimation of stability for this type of process is set. The central objective is to obtain a bounded stability index expressed in terms of the Lévy-Prokhorov metric;likewise, sufficient conditions are provided for the existence of such inequalities.
文摘In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary policies and for the value functions, the stability index is explicitly calculated and through statistical techniques its asymptotic behavior is investigated (using numerical experiments) when the discount coefficient approaches 1. The results obtained define the conditions under which an approximate optimal stationary policy can be used to control the original process.
文摘L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.
文摘Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.
基金supported in part by National Natural Science Foundation of China(62203127)Basic and Applied Basic Research Project of Guangzhou City(2023A04J1712)+1 种基金The Foshan-HKUST Projects Program(FSUST19-FYTRI01)GDAS’Project of Science and Technology Development(2020GDASYL-20200202001).
文摘As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.
基金supported in part by the Natural Sciences Engineering Research Council of Canada (NSERC)。
文摘This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries.
基金the Key Technologies R&D Program of Harbin (0111211102).
文摘The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
基金supported by National Natural Science Foundation of China (Nos. 61773201, 62073165)the 111 Project,China (No. B20007)the Fundamental Research Funds for the Central Universities, China (No. NZ2020003)。
文摘Probabilistic Fault Recoverability(FR) property reveals the capability of a system to accommodate faults under admissible input energy constraints in the sense of satisfactory probability. Motivated by the idea of probabilistic control methods, a class of admissible probability density functions is designed for detailed description of fault parameters, under which several probabilistic FR conditions are established. This significantly enlarges the range of recoverable faults obtained from the deterministic FR analysis. The tradeoffs between the risk of performance degradation and this increased recoverability margin are exactly achieved by allowing a small risk of FR violation. This paper analyzes the probability FR of dynamic systems with switching and interconnection characteristics, and applies the new results to several aircraft models including single longitudinal aircraft dynamic, Highly Maneuverable Technology(HiMAT) vehicle and meta aircraft. Simulation results show the efficiency of the proposed methods based on the comparison between deterministic and probabilistic cases.
文摘Low carbon steels microalloyed with small amount of carbide and/or nitride forming elements such as Nb,Ti and V with Thermomechanical controlled processing (TMCP) can give fine grained ferrite structure with high strength and superior toughness.The present study was aimed at identifying rolling parameters as well as microstructural characterization for accomplishing high yield strength and high charpy impact property at-60℃ by controlling hot rolling parameters and microstructure Grain size distribution was also monitored and related to mechanical properties of steel.
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), and the Specialized Research Fund for the Doctoral Program of Higher Edu-cation of China (No.20050055013).
文摘A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.
基金Supported by the Key Agricultral Technology Program of Shanghai Science & Technology Committee(073919108)MajorState Basic Research Development Program of China(2007CB714303)
文摘The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts have been made to increase heterologous protein productivity by P. pastoris in recent years. When new engineered yeast strains are constructed and are ready to use tot industrial protein production, process control and optimization techniques should be applied to improve the fermentation performance in the following aspects: (1) increase recombinant cell concentrations in fermentor to high density during growth phase; (2) effectively induce heterologous proteins by enhancing/stabilizing titers or concentrations of the proteins during induction phase; (3) decrease operation costs by relieving the working loads of heat-exchange and oxygen supply. This article reviews and discusses the key and commonly used techniques in heterologous protein production by P. pastoris, with the focus on optimizations of fermentation media and basic operation conditions, development of optimal glycerol feeding strategies for achieving high density cultivation of P. pastoris and effective heterologous protein induction methods by regulating specific growth rate, methanol concentration, temperatures, mixture ratio of multi-carbon substrates, etc. Metabolic analysis for recombinant protein production by P. pastoris is also introduced to interpret the mechanism of sub-optimal heterologous protein production and to explore further optimal expression methods.
基金Item Sponsored by National Natural Science Foundation of China(50074026)
文摘A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.
基金Supported by the National High Technology Research and Development Program of China(2007AA04Z193) the National Natural Science Foundation of China(60974008 60704032)
文摘For high-purity distillation processes,it is difficult to achieve a good direct product quality control using traditional proportional-integral-differential(PID)control or multivariable predictive control technique due to some difficulties,such as long response time,many un-measurable disturbances,and the reliability and precision issues of product quality soft-sensors.In this paper,based on the first principle analysis and dynamic simulation of a distillation process,a new predictive control scheme is proposed by using the split ratio of distillate flow rate to that of bottoms as an essential controlled variable.Correspondingly,a new strategy with integrated control and on-line optimization is developed,which consists of model predictive control of the split ratio,surrogate model based on radial basis function neural network for optimization,and modified differential evolution optimization algorithm. With the strategy,the process achieves its steady state quickly,so more profit can be obtained.The proposed strategy has been successfully applied to a gas separation plant for more than three years,which shows that the strategy is feasible and effective.
文摘Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering.
基金supported by the National Natural Science Foundation of China(61603418,61673400,61273185)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61621062)the Innovation-driven Plan in Central South University(2015cx007)
文摘The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential(ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidationreduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operationalpattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.
基金The authors acknowledge financial support for this research from the National Key Research and Development Program of China(2017YFB0403300 and 2017YFB043305)the National Natural Science Foundation of China(51425405 and 51874269),the National Science-Technology Support Plan Projects(2015BAB02B05)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2014037).Zhi Sun acknowledges financial support from the National Youth Thousand Talents Program.The authors acknowledge constructive suggestions from Prof.Jianxin Yang.
文摘In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.
基金We acknowledge the financial contributions from the National Natural Science Foundation of China(21978037,21676043,21527812,and U1663223)the Ministry of Science and Technology of the People’s Republic of China innovation team in key area(2016RA4053)Fundamental Research Funds for the Central Universities(DUT19TD33).
文摘Crystallization is a fundamental separation technology used for the production of particulate solids.Accurate nucleation and growth process control are vitally important but difficult.A novel controlling technology that can simultaneously intensify the overall crystallization process remains a significant challenge.Membrane crystallization(MCr),which has progressed significantly in recent years,is a hybrid technology platform with great potential to address this goal.This review illustrates the basic concepts of MCr and its promising applications for crystallization control and process intensification,including a state-of-the-art review of key MCr-utilized membrane materials,process control mechanisms,and optimization strategies based on diverse hybrid membranes and crystallization processes.Finally,efforts to promote MCr technology to industrial use,unexplored issues,and open questions to be addressed are outlined.
基金Project(2017YFC0210302)supported by the National Key R&D Program of ChinaProjects(U1660206,U1760107)supported by the National Natural Science Foundation of China
文摘Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were studied.Results showed that the coke breeze adhered with the mixture of CaO and Fe2O3 or calcium ferrite significantly lowers the NOx emission concentration and conversion ratio of fuel-N to NOx.Pretreating the coke with the mixture of lime slurry and iron ore fines helped to improve the granulation effect,and optimize the carbon distribution in granules.When the mass ratio of coke breeze,quick lime,water and iron ore fines was 2:1:1:1,the average NOx emission concentration was decreased from 220 mg/m3 to 166 mg/m3,and the conversion ratio of fuel-N was reduced from 54.2%to 40.9%.