L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled pro...L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.展开更多
Abstract Most papers in scheduling research have treated individual job processing times as fixed parameters. However, in many practical situations, a manager may control processing time by reallocating resources. In ...Abstract Most papers in scheduling research have treated individual job processing times as fixed parameters. However, in many practical situations, a manager may control processing time by reallocating resources. In this paper, authors consider a machine scheduling problem with controllable processing times. In the first part of this paper, a special case where the processing times and compression costs are uniform among jobs is discussed. Theoretical results are derived that aid in developing an O(n 2) algorithm to slove the problem optimally. In the second part of this paper, authors generalize the discussion to general case. An effective heuristic to the general problem will be presented.展开更多
Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous...Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous capture by integrating the UV signal of breakthrough.In this study,the process risk of CaptureSMB continuous capture under AutoMAb control towards the feedstock variations was assessed by a mechanistic model developed by us.The effects of target protein and impurities under the variation range of±10 mAU·min^(-1) on load amount,protein loss,process productivity,and resin capacity utilization were investigated.The results showed that the CaptureSMB process could be successfully controlled by AutoMAb towards increased or slightly decreased concentration of feedstock.However,the load process would be out of control with drastically decreased target protein or impurities,and the decreased impurities would lead to protein loss.It was found that AutoMAb control would cause 44.7%non-operational areas and 18.3%protein loss areas in the variation range of±10 mAU·min^(-1).To improve the stability of the CaptureSMB process,a modified AutoMAb control that would stop the load procedure when the absolute value of the integral area reached the preset value,was proposed to reduce the risk of protein loss and the non-operational area.展开更多
Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and proces...Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.展开更多
The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and...The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process展开更多
The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-me...The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-mechanical control processing (TMCP) schedules containing a two stage multi-pass controlled rolling coupled with moderate cooling rates were applied to hot rolling experiments and acicular ferrite dominated microstructure was obtained. Microstructures and mechanical properties of hot rolled plates were related to TMCP processing, and regression equations describing the relation between processing parameters and mechanical properties in the current TMCP were developed, which could be used to predict mechanical properties of the experimental steel during commercially processing. It was found that with an increase in cooling rate after hot rolling, grain size in the microstructure became smaller, the amount of polygonal ferrite decreased and acicular ferrite increased, and accordingly mechanical properties increased.展开更多
A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solvin...A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.展开更多
The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts...The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts have been made to increase heterologous protein productivity by P. pastoris in recent years. When new engineered yeast strains are constructed and are ready to use tot industrial protein production, process control and optimization techniques should be applied to improve the fermentation performance in the following aspects: (1) increase recombinant cell concentrations in fermentor to high density during growth phase; (2) effectively induce heterologous proteins by enhancing/stabilizing titers or concentrations of the proteins during induction phase; (3) decrease operation costs by relieving the working loads of heat-exchange and oxygen supply. This article reviews and discusses the key and commonly used techniques in heterologous protein production by P. pastoris, with the focus on optimizations of fermentation media and basic operation conditions, development of optimal glycerol feeding strategies for achieving high density cultivation of P. pastoris and effective heterologous protein induction methods by regulating specific growth rate, methanol concentration, temperatures, mixture ratio of multi-carbon substrates, etc. Metabolic analysis for recombinant protein production by P. pastoris is also introduced to interpret the mechanism of sub-optimal heterologous protein production and to explore further optimal expression methods.展开更多
For high-purity distillation processes,it is difficult to achieve a good direct product quality control using traditional proportional-integral-differential(PID)control or multivariable predictive control technique du...For high-purity distillation processes,it is difficult to achieve a good direct product quality control using traditional proportional-integral-differential(PID)control or multivariable predictive control technique due to some difficulties,such as long response time,many un-measurable disturbances,and the reliability and precision issues of product quality soft-sensors.In this paper,based on the first principle analysis and dynamic simulation of a distillation process,a new predictive control scheme is proposed by using the split ratio of distillate flow rate to that of bottoms as an essential controlled variable.Correspondingly,a new strategy with integrated control and on-line optimization is developed,which consists of model predictive control of the split ratio,surrogate model based on radial basis function neural network for optimization,and modified differential evolution optimization algorithm. With the strategy,the process achieves its steady state quickly,so more profit can be obtained.The proposed strategy has been successfully applied to a gas separation plant for more than three years,which shows that the strategy is feasible and effective.展开更多
In electronics packaging the time-pressure dispensing system is widely usedto squeeze the adhesive fluid in a syringe onto boards or substrates with the pressurized air.However, complexity of the process, which includ...In electronics packaging the time-pressure dispensing system is widely usedto squeeze the adhesive fluid in a syringe onto boards or substrates with the pressurized air.However, complexity of the process, which includes the air-fluid coupling and the nonlinearuncertainties, makes it difficult to have a consistent process performance. An integrated dispensingprocess model is first introduced and then its input-output regression relationship is used todesign a run to run control methodology for this process. The controller takes EWMA scheme and itsstability region is given. Experimental results verify the effectiveness of the proposed run to runcontrol method for dispensing process.展开更多
The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing...The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer functional structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, spacetime scale, and multi-level dynamics. Control action will differ at different scales, with more design being required at both fast and slow time scales. More quantitative action is required in low-level operations, while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the control action to be distributed and integrated with different approaches, including smart sensing, optimal design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for multiscale modeling and control.展开更多
A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been a...A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been adopted in parallel. Under the decoupling cost function, a decoupling control strategy is proposed. Then the stability condition of the controller is presented based on the Lyapunov theory. Simulation examples are given to show effectiveness of the proposed decoupling control.展开更多
Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have no...Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.展开更多
A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and ...A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.展开更多
In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for ma...In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors.展开更多
The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This pa...The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential(ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidationreduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operationalpattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.展开更多
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves ...Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering.展开更多
The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw wate...The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used in a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.展开更多
Crystallization is a fundamental separation technology used for the production of particulate solids.Accurate nucleation and growth process control are vitally important but difficult.A novel controlling technology th...Crystallization is a fundamental separation technology used for the production of particulate solids.Accurate nucleation and growth process control are vitally important but difficult.A novel controlling technology that can simultaneously intensify the overall crystallization process remains a significant challenge.Membrane crystallization(MCr),which has progressed significantly in recent years,is a hybrid technology platform with great potential to address this goal.This review illustrates the basic concepts of MCr and its promising applications for crystallization control and process intensification,including a state-of-the-art review of key MCr-utilized membrane materials,process control mechanisms,and optimization strategies based on diverse hybrid membranes and crystallization processes.Finally,efforts to promote MCr technology to industrial use,unexplored issues,and open questions to be addressed are outlined.展开更多
文摘L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.
文摘Abstract Most papers in scheduling research have treated individual job processing times as fixed parameters. However, in many practical situations, a manager may control processing time by reallocating resources. In this paper, authors consider a machine scheduling problem with controllable processing times. In the first part of this paper, a special case where the processing times and compression costs are uniform among jobs is discussed. Theoretical results are derived that aid in developing an O(n 2) algorithm to slove the problem optimally. In the second part of this paper, authors generalize the discussion to general case. An effective heuristic to the general problem will be presented.
基金supported by the Zhejiang Key Science and Technology Project(2023C03116)National Natural Science Foundation of China(22078286)National Key Research and Development Program of China(2021YFE0113300).
文摘Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous capture by integrating the UV signal of breakthrough.In this study,the process risk of CaptureSMB continuous capture under AutoMAb control towards the feedstock variations was assessed by a mechanistic model developed by us.The effects of target protein and impurities under the variation range of±10 mAU·min^(-1) on load amount,protein loss,process productivity,and resin capacity utilization were investigated.The results showed that the CaptureSMB process could be successfully controlled by AutoMAb towards increased or slightly decreased concentration of feedstock.However,the load process would be out of control with drastically decreased target protein or impurities,and the decreased impurities would lead to protein loss.It was found that AutoMAb control would cause 44.7%non-operational areas and 18.3%protein loss areas in the variation range of±10 mAU·min^(-1).To improve the stability of the CaptureSMB process,a modified AutoMAb control that would stop the load procedure when the absolute value of the integral area reached the preset value,was proposed to reduce the risk of protein loss and the non-operational area.
文摘Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.
基金the Key Technologies R&D Program of Harbin (0111211102).
文摘The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
文摘The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-mechanical control processing (TMCP) schedules containing a two stage multi-pass controlled rolling coupled with moderate cooling rates were applied to hot rolling experiments and acicular ferrite dominated microstructure was obtained. Microstructures and mechanical properties of hot rolled plates were related to TMCP processing, and regression equations describing the relation between processing parameters and mechanical properties in the current TMCP were developed, which could be used to predict mechanical properties of the experimental steel during commercially processing. It was found that with an increase in cooling rate after hot rolling, grain size in the microstructure became smaller, the amount of polygonal ferrite decreased and acicular ferrite increased, and accordingly mechanical properties increased.
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), and the Specialized Research Fund for the Doctoral Program of Higher Edu-cation of China (No.20050055013).
文摘A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.
基金Supported by the Key Agricultral Technology Program of Shanghai Science & Technology Committee(073919108)MajorState Basic Research Development Program of China(2007CB714303)
文摘The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts have been made to increase heterologous protein productivity by P. pastoris in recent years. When new engineered yeast strains are constructed and are ready to use tot industrial protein production, process control and optimization techniques should be applied to improve the fermentation performance in the following aspects: (1) increase recombinant cell concentrations in fermentor to high density during growth phase; (2) effectively induce heterologous proteins by enhancing/stabilizing titers or concentrations of the proteins during induction phase; (3) decrease operation costs by relieving the working loads of heat-exchange and oxygen supply. This article reviews and discusses the key and commonly used techniques in heterologous protein production by P. pastoris, with the focus on optimizations of fermentation media and basic operation conditions, development of optimal glycerol feeding strategies for achieving high density cultivation of P. pastoris and effective heterologous protein induction methods by regulating specific growth rate, methanol concentration, temperatures, mixture ratio of multi-carbon substrates, etc. Metabolic analysis for recombinant protein production by P. pastoris is also introduced to interpret the mechanism of sub-optimal heterologous protein production and to explore further optimal expression methods.
基金Supported by the National High Technology Research and Development Program of China(2007AA04Z193) the National Natural Science Foundation of China(60974008 60704032)
文摘For high-purity distillation processes,it is difficult to achieve a good direct product quality control using traditional proportional-integral-differential(PID)control or multivariable predictive control technique due to some difficulties,such as long response time,many un-measurable disturbances,and the reliability and precision issues of product quality soft-sensors.In this paper,based on the first principle analysis and dynamic simulation of a distillation process,a new predictive control scheme is proposed by using the split ratio of distillate flow rate to that of bottoms as an essential controlled variable.Correspondingly,a new strategy with integrated control and on-line optimization is developed,which consists of model predictive control of the split ratio,surrogate model based on radial basis function neural network for optimization,and modified differential evolution optimization algorithm. With the strategy,the process achieves its steady state quickly,so more profit can be obtained.The proposed strategy has been successfully applied to a gas separation plant for more than three years,which shows that the strategy is feasible and effective.
基金This project is supported by National Natural Science Foundation of China (No.50390063, 50390064), Research Grant Council of HK SAR (CityU1086/01E)and City University of HK Applied R&D Project(No.9620002).
文摘In electronics packaging the time-pressure dispensing system is widely usedto squeeze the adhesive fluid in a syringe onto boards or substrates with the pressurized air.However, complexity of the process, which includes the air-fluid coupling and the nonlinearuncertainties, makes it difficult to have a consistent process performance. An integrated dispensingprocess model is first introduced and then its input-output regression relationship is used todesign a run to run control methodology for this process. The controller takes EWMA scheme and itsstability region is given. Experimental results verify the effectiveness of the proposed run to runcontrol method for dispensing process.
基金partially supported by a GRF project from RGC of Hong Kong China (City U: 11207714)+2 种基金a SRG grant from City University of Hong Kong China (7004909)a National Basic Research Program of China (2011CB013104)
文摘The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer functional structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, spacetime scale, and multi-level dynamics. Control action will differ at different scales, with more design being required at both fast and slow time scales. More quantitative action is required in low-level operations, while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the control action to be distributed and integrated with different approaches, including smart sensing, optimal design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for multiscale modeling and control.
文摘A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been adopted in parallel. Under the decoupling cost function, a decoupling control strategy is proposed. Then the stability condition of the controller is presented based on the Lyapunov theory. Simulation examples are given to show effectiveness of the proposed decoupling control.
基金supported by National Natural Science Foundation of China (Grant No. 70931004,Grant No. 70802043)
文摘Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.
基金Item Sponsored by National Natural Science Foundation of China(50074026)
文摘A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.
文摘In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors.
基金supported by the National Natural Science Foundation of China(61603418,61673400,61273185)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61621062)the Innovation-driven Plan in Central South University(2015cx007)
文摘The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential(ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidationreduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operationalpattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.
文摘Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering.
基金This work was supported by the project 863 ofChina(No.863-511092)
文摘The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used in a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.
基金We acknowledge the financial contributions from the National Natural Science Foundation of China(21978037,21676043,21527812,and U1663223)the Ministry of Science and Technology of the People’s Republic of China innovation team in key area(2016RA4053)Fundamental Research Funds for the Central Universities(DUT19TD33).
文摘Crystallization is a fundamental separation technology used for the production of particulate solids.Accurate nucleation and growth process control are vitally important but difficult.A novel controlling technology that can simultaneously intensify the overall crystallization process remains a significant challenge.Membrane crystallization(MCr),which has progressed significantly in recent years,is a hybrid technology platform with great potential to address this goal.This review illustrates the basic concepts of MCr and its promising applications for crystallization control and process intensification,including a state-of-the-art review of key MCr-utilized membrane materials,process control mechanisms,and optimization strategies based on diverse hybrid membranes and crystallization processes.Finally,efforts to promote MCr technology to industrial use,unexplored issues,and open questions to be addressed are outlined.