The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is intr...The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires.展开更多
Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind o...Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.展开更多
The purpose of this study is to develop a self-balancing controller (SBC) for one-wheeled vehicles (OWVs). The composition of the OWV system includes: a DSP motion card, a wheel motor, and its driver. In addition, a t...The purpose of this study is to develop a self-balancing controller (SBC) for one-wheeled vehicles (OWVs). The composition of the OWV system includes: a DSP motion card, a wheel motor, and its driver. In addition, a tilt and a gyro, for sensing the angle and angular velocity of the body slope, are used to realize self-balancing controls. OWV, a kind of unicycle robot, can be dealt with as a mobile-inverted-pendulum system for its instability. However, for its possible applications in mobile carriers or robots, it is worth being further developed. In this study, first, the OWV system model will be derived. Next, through the simulations based on the mathematical model, the analysis of system stability and controllability can be evaluated. Last, a concise and realizable method, through system pole-placement and linear quadratic regulator (LQR), will be proposed to design the SBC. The effectiveness, reliability, and feasibility of the proposal will be con- firmed through simulation studies and experimenting on a physical OWV.展开更多
The integrated power and attitude control for a bias momentum attitudecontrol system is investigated. A pair of counter-spinning wheels is used to provide the biasangular momentum and store/ discharge energy for power...The integrated power and attitude control for a bias momentum attitudecontrol system is investigated. A pair of counter-spinning wheels is used to provide the biasangular momentum and store/ discharge energy for power requirement of the devices on the spacecraft.The roll/yaw motion is controlled by pitch magnetic dipole moment. The torque-based control law ofthe wheels is designed, so that the desired pitch control torque is provided and the operation ofcharging/discharging energy is carried out based on the given power. System singularity in thecontrol law of wheels is fully avoided by keeping the wheels counter-spinning. A power managementscheme using kinetic energy feedback is proposed to keep energy balance, which can avoid wheelsaturation caused by superfluous energy. The minimum moment of inertia of the wheels is limited bythe maximum bias angular momentum and the minimum energy, such constrains are analyzed incombination with the geometrical method. Numerical simulation results are presented to demonstratethe effectiveness of the control scheme.展开更多
The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and...The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and power stations from stockpiles.BWRs are very large in size,heavy in weight,expensive in price,and slow in motion.There are many challenges in attempting to automatically control their motion to accurately follow the required trajectories involving uncertain parameters from factors such as friction,turbulent wind,its own dynamics,and encoder limitations.As BWRs are always heavily engaged in production and cannot be spared very long for motion control studies and associated developments,a BWR model and simulation environment closely resembling real life conditions would be beneficial.The following research focused mainly on the implementation of fuzzy logic to a BWR motion control from an engineer's perspective.First,the modeling of a BWR including partially known parameters such as friction force and turbulence to the system was presented.This was then followed by the design of a fuzzy logic-based control built on a model-based control loop.The investigation provides engineers with an example of applying fuzzy logic in a model based approach to properly control the motion of a large BWR following defined trajectories,as well as to show possible ways of further improving the controller performance.The result indicates that fuzzy logic can be applied easily by engineers to overcome most motion control issues involving a large BWR.展开更多
A control strategy for real-time target tracking for wheeled mobile robots is presented.Using a modified Kalman filter for environment perception,a novel tracking control law derived from Lyapunov stability theory is ...A control strategy for real-time target tracking for wheeled mobile robots is presented.Using a modified Kalman filter for environment perception,a novel tracking control law derived from Lyapunov stability theory is introduced.Tuning of linear velocity and angular velocity with mechanical constraints is applied.The proposed control system can simultaneously solve the target trajectory prediction,real-time tracking,and posture regulation problems of a wheeled mobile robot.Experimental results illustrate the effectiveness of the proposed tracking control laws.展开更多
in the design of the antiskid braking system (ABS) of an aircraft, the braking moment is one of the most important parameters, because it influences not only the deceleration and the taxiing distance of an aircraft, b...in the design of the antiskid braking system (ABS) of an aircraft, the braking moment is one of the most important parameters, because it influences not only the deceleration and the taxiing distance of an aircraft, but also the strength and the fatigue life of the landing gear. Furthermore, the determination of braking moment will be concerned in the reasonableness of the demands proposed for the material design of a brake. For this reason, through setting up the mechanical model of a wheel and tyre under taxiing and braking, dynamic simulations on the optimal closed-loop control of braking moment are carried out by means of the nonlinear control theory. The simulation results show that the difference between the real output of the ABS and the expected one can tend to the minimum under the optimal control. And also, this optimal control can guarantee the braking moment to change smoothly.展开更多
The complete dynamics model of a four-Mecanum-wheeled robot considering mass eccentricity and friction uncertainty is derived using the Lagrange’s equation. Then based on the dynamics model, a nonlinear stable adapti...The complete dynamics model of a four-Mecanum-wheeled robot considering mass eccentricity and friction uncertainty is derived using the Lagrange’s equation. Then based on the dynamics model, a nonlinear stable adaptive control law is derived using the backstepping method via Lyapunov stability theory. In order to compensate for the model uncertainty, a nonlinear damping term is included in the control law, and the parameter update law with σ-modification is considered for the uncertainty estimation. Computer simulations are conducted to illustrate the suggested control approach.展开更多
Since the tubeless tires and especially cast alloy wheels are used, the air tightness of wheels is an important factor of the automobiles quality. Based on specification of the car industry that up to 10% decrease of ...Since the tubeless tires and especially cast alloy wheels are used, the air tightness of wheels is an important factor of the automobiles quality. Based on specification of the car industry that up to 10% decrease of the prescribed nominal tire pressure during a time of six-month is allowed, the requirements presented in specifications and norms are treated and validated. The practical experience and influences on the wheel tightness control are discussed and the data presented in a report of a wheel manufacturer, concerning the replacements of wheels in service due to air leakage are evaluated. Summarizing the results of analyses, a proposal is made for the testing of the cast aluminum car wheels to meet the requirements for a reliable and economical air tightness control in modern test facilities.展开更多
文摘The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires.
文摘Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.
文摘The purpose of this study is to develop a self-balancing controller (SBC) for one-wheeled vehicles (OWVs). The composition of the OWV system includes: a DSP motion card, a wheel motor, and its driver. In addition, a tilt and a gyro, for sensing the angle and angular velocity of the body slope, are used to realize self-balancing controls. OWV, a kind of unicycle robot, can be dealt with as a mobile-inverted-pendulum system for its instability. However, for its possible applications in mobile carriers or robots, it is worth being further developed. In this study, first, the OWV system model will be derived. Next, through the simulations based on the mathematical model, the analysis of system stability and controllability can be evaluated. Last, a concise and realizable method, through system pole-placement and linear quadratic regulator (LQR), will be proposed to design the SBC. The effectiveness, reliability, and feasibility of the proposal will be con- firmed through simulation studies and experimenting on a physical OWV.
文摘The integrated power and attitude control for a bias momentum attitudecontrol system is investigated. A pair of counter-spinning wheels is used to provide the biasangular momentum and store/ discharge energy for power requirement of the devices on the spacecraft.The roll/yaw motion is controlled by pitch magnetic dipole moment. The torque-based control law ofthe wheels is designed, so that the desired pitch control torque is provided and the operation ofcharging/discharging energy is carried out based on the given power. System singularity in thecontrol law of wheels is fully avoided by keeping the wheels counter-spinning. A power managementscheme using kinetic energy feedback is proposed to keep energy balance, which can avoid wheelsaturation caused by superfluous energy. The minimum moment of inertia of the wheels is limited bythe maximum bias angular momentum and the minimum energy, such constrains are analyzed incombination with the geometrical method. Numerical simulation results are presented to demonstratethe effectiveness of the control scheme.
基金support through the ARC Linkage LP0989780 grant titled "The study anddevelopment of a 3-D real-time stockpile management system"the support in part from Institute for Mineral and Energy Resources,University of Adelaide 2009-2010,as well as Faculty of Engineering,Computer and Mathematical Sciences strategic research funding,2010
文摘The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and power stations from stockpiles.BWRs are very large in size,heavy in weight,expensive in price,and slow in motion.There are many challenges in attempting to automatically control their motion to accurately follow the required trajectories involving uncertain parameters from factors such as friction,turbulent wind,its own dynamics,and encoder limitations.As BWRs are always heavily engaged in production and cannot be spared very long for motion control studies and associated developments,a BWR model and simulation environment closely resembling real life conditions would be beneficial.The following research focused mainly on the implementation of fuzzy logic to a BWR motion control from an engineer's perspective.First,the modeling of a BWR including partially known parameters such as friction force and turbulence to the system was presented.This was then followed by the design of a fuzzy logic-based control built on a model-based control loop.The investigation provides engineers with an example of applying fuzzy logic in a model based approach to properly control the motion of a large BWR following defined trajectories,as well as to show possible ways of further improving the controller performance.The result indicates that fuzzy logic can be applied easily by engineers to overcome most motion control issues involving a large BWR.
文摘A control strategy for real-time target tracking for wheeled mobile robots is presented.Using a modified Kalman filter for environment perception,a novel tracking control law derived from Lyapunov stability theory is introduced.Tuning of linear velocity and angular velocity with mechanical constraints is applied.The proposed control system can simultaneously solve the target trajectory prediction,real-time tracking,and posture regulation problems of a wheeled mobile robot.Experimental results illustrate the effectiveness of the proposed tracking control laws.
文摘in the design of the antiskid braking system (ABS) of an aircraft, the braking moment is one of the most important parameters, because it influences not only the deceleration and the taxiing distance of an aircraft, but also the strength and the fatigue life of the landing gear. Furthermore, the determination of braking moment will be concerned in the reasonableness of the demands proposed for the material design of a brake. For this reason, through setting up the mechanical model of a wheel and tyre under taxiing and braking, dynamic simulations on the optimal closed-loop control of braking moment are carried out by means of the nonlinear control theory. The simulation results show that the difference between the real output of the ABS and the expected one can tend to the minimum under the optimal control. And also, this optimal control can guarantee the braking moment to change smoothly.
文摘The complete dynamics model of a four-Mecanum-wheeled robot considering mass eccentricity and friction uncertainty is derived using the Lagrange’s equation. Then based on the dynamics model, a nonlinear stable adaptive control law is derived using the backstepping method via Lyapunov stability theory. In order to compensate for the model uncertainty, a nonlinear damping term is included in the control law, and the parameter update law with σ-modification is considered for the uncertainty estimation. Computer simulations are conducted to illustrate the suggested control approach.
文摘Since the tubeless tires and especially cast alloy wheels are used, the air tightness of wheels is an important factor of the automobiles quality. Based on specification of the car industry that up to 10% decrease of the prescribed nominal tire pressure during a time of six-month is allowed, the requirements presented in specifications and norms are treated and validated. The practical experience and influences on the wheel tightness control are discussed and the data presented in a report of a wheel manufacturer, concerning the replacements of wheels in service due to air leakage are evaluated. Summarizing the results of analyses, a proposal is made for the testing of the cast aluminum car wheels to meet the requirements for a reliable and economical air tightness control in modern test facilities.