Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy...Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly...Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.展开更多
The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an i...The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load.Consequently,persistent overload situations eventually result in network congestion.The Software Defined Network(SDN)technology is employed in data centers as a network architecture to enhance performance.This paper introduces an adaptive congestion control strategy,named DA-DCTCP,for SDN-based Data Centers.It incorporates Explicit Congestion Notification(ECN)and Round-Trip Time(RTT)to establish congestion awareness and an ECN marking model.To mitigate incorrect congestion caused by abrupt flows,an appropriate ECN marking is selected based on the queue length and its growth slope,and the congestion window(CWND)is adjusted by calculating RTT.Simultaneously,the marking threshold for queue length is continuously adapted using the current queue length of the switch as a parameter to accommodate changes in data centers.The evaluation conducted through Mininet simulations demonstrates that DA-DCTCP yields advantages in terms of throughput,flow completion time(FCT),latency,and resistance against packet loss.These benefits contribute to reducing data center congestion,enhancing the stability of data transmission,and improving throughput.展开更多
As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data so...As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.展开更多
With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits ...With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations.展开更多
Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with s...Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.展开更多
In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster ...In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.展开更多
In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios ev...In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively.展开更多
With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,howeve...With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.展开更多
1Background:Irritable bowel syndrome(IBS)is a disorder of bowel function,and diarrhea-predominant irritable bowel syndrome(IBS-D)is the most common.The current treatment for IBS-D is focused on improving patients’gas...1Background:Irritable bowel syndrome(IBS)is a disorder of bowel function,and diarrhea-predominant irritable bowel syndrome(IBS-D)is the most common.The current treatment for IBS-D is focused on improving patients’gastrointestinal-related symptoms,but there are limitations such as unstable effects and adverse drug reactions.Acupuncture and moxibustion exerts advantages in treating IBS-D.They include several forms,of which moxibustion is one of the most commonly used.And moxibustion is a common way used in treating IBS-D,but there is a lack of relevant evidence-based medical research data.This protocol aims to compare the efficacy of moxibustion(mild-warm moxibustion)in treating IBS-D(spleen deficiency and dampness excess syndrome)with the first-line treatment.Methods:In this prospective,parallel,randomized controlled trial(RCT)protocol,patients will be randomly allocated for 4-week treatment or control therapies and then 4-week follow-up in both groups.We will use Irritable Bowel Syndrome-Symptom Severity Scale(IBS-SSS)score,Irritable Bowel Syndrome-Quality of Life(IBS-QOL)score,serum brain-gut peptide levels,and traditional Chinese medicine(TCM)syndrome scale score to produce more evidence on IBS-D treatment with moxibustion.Finally,we will use SPSS 22.0 software to statistically analyze the data.Discussion:Mild-warm moxibustion is a complementary alternative therapy that fits with the pathogenesis of IBS-D.We hope to see more clinical evidence for mild-warm moxibustion against IBS-D that this RCT supported.展开更多
In the era of big data,the construction and implementation of a quality control audit system are particularly crucial.This article delves into the impact of big data technology on quality control auditing,establishes ...In the era of big data,the construction and implementation of a quality control audit system are particularly crucial.This article delves into the impact of big data technology on quality control auditing,establishes a quality control auditing system in the big data era,and elucidates the pathway to realizing this system.Through the application of big data technology to quality control audits,there is an enhancement in audit efficiency,the attainment of more accurate risk assessment,and the provision of robust support for the sustainable development of enterprises.展开更多
This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative r...This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative risk management approaches.This article proposes response strategies from four key aspects:establishing a proactive risk management culture,building a foundation in technology and data,conducting big data-driven risk analysis,and implementing predictive analysis and real-time monitoring.State-owned enterprises can foster a proactive risk management culture by cultivating employee risk awareness,demonstrating leadership,and establishing transparency and open communication.Additionally,data integration and analysis,leveraging the latest technology,are crucial factors that can help companies better identify risks and opportunities.展开更多
With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning ...With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning the interaction between the atmospheric boundary layer and wind turbine arrays,the generated wakes and their interactions,and wind energy harvesting.However,the majority of the existing ML models for predicting wind turbine wakes merely recreate Computational fluid dynamics(CFD)simulated data with analogous accuracy but reduced computational costs,thus providing surrogate models rather than enhanced data-enabled physics insights.Although ML-based surrogate models are useful to overcome current limitations associated with the high computational costs of CFD models,using ML to unveil processes from experimental data or enhance modeling capabilities is deemed a potential research direction to pursue.In this letter,we discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations,along with new promising research strategies.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about...Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about individual Americans derived from consumer use of the internet and connected devices. Data profiles are then sold for profit. Government investigators use a legal loophole to purchase this data instead of obtaining a search warrant, which the Fourth Amendment would otherwise require. Consumers have lacked a reasonable means to fight or correct the information data brokers collect. Americans may not even be aware of the risks of data aggregation, which upends the test of reasonable expectations used in a search warrant analysis. Data aggregation should be controlled and regulated, which is the direction some privacy laws take. Legislatures must step forward to safeguard against shadowy data-profiling practices, whether abroad or at home. In the meantime, courts can modify their search warrant analysis by including data privacy principles.展开更多
Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air q...Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air quality challenges, particularly in urban centers. While outdoor air pollution has received considerable attention, the issue of indoor air quality remains underexplored yet equally critical. This study aims to develop a reliable, cost-effective, and user-friendly solution for continuous monitoring and reporting of indoor air quality, accessible from anywhere via a web interface. Addressing the urgent need for effective indoor air quality monitoring in urban hospitals, the research focuses on designing and implementing a smart indoor air quality monitoring system using Arduino technology. Employing an Arduino Uno, ESP8266 Wi-Fi module, and MQ135 gas sensor, the system collects real-time air quality data, transmits it to the ThingSpeak cloud platform, and visualizes it through a user-friendly web interface. This project offers a cost-effective, portable, and reliable solution for monitoring indoor air quality, aiming to mitigate health risks and promote a healthier living environment.展开更多
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy...In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.展开更多
With the development of information technology and cloud computing,data sharing has become an important part of scientific research.In traditional data sharing,data is stored on a third-party storage platform,which ca...With the development of information technology and cloud computing,data sharing has become an important part of scientific research.In traditional data sharing,data is stored on a third-party storage platform,which causes the owner to lose control of the data.As a result,there are issues of intentional data leakage and tampering by third parties,and the private information contained in the data may lead to more significant issues.Furthermore,data is frequently maintained on multiple storage platforms,posing significant hurdles in terms of enlisting multiple parties to engage in data sharing while maintaining consistency.In this work,we propose a new architecture for applying blockchains to data sharing and achieve efficient and reliable data sharing among heterogeneous blockchains.We design a new data sharing transaction mechanism based on the system architecture to protect the security of the raw data and the processing process.We also design and implement a hybrid concurrency control protocol to overcome issues caused by the large differences in blockchain performance in our system and to improve the success rate of data sharing transactions.We took Ethereum and Hyperledger Fabric as examples to conduct crossblockchain data sharing experiments.The results show that our system achieves data sharing across heterogeneous blockchains with reasonable performance and has high scalability.展开更多
基金Key Research and Development and Promotion Program of Henan Province(No.222102210069)Zhongyuan Science and Technology Innovation Leading Talent Project(224200510003)National Natural Science Foundation of China(No.62102449).
文摘Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A3063257)supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley Support Program(2023-DD-RD-0152)supervised by the Innovation Foundation.
文摘Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.
基金supported by the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load.Consequently,persistent overload situations eventually result in network congestion.The Software Defined Network(SDN)technology is employed in data centers as a network architecture to enhance performance.This paper introduces an adaptive congestion control strategy,named DA-DCTCP,for SDN-based Data Centers.It incorporates Explicit Congestion Notification(ECN)and Round-Trip Time(RTT)to establish congestion awareness and an ECN marking model.To mitigate incorrect congestion caused by abrupt flows,an appropriate ECN marking is selected based on the queue length and its growth slope,and the congestion window(CWND)is adjusted by calculating RTT.Simultaneously,the marking threshold for queue length is continuously adapted using the current queue length of the switch as a parameter to accommodate changes in data centers.The evaluation conducted through Mininet simulations demonstrates that DA-DCTCP yields advantages in terms of throughput,flow completion time(FCT),latency,and resistance against packet loss.These benefits contribute to reducing data center congestion,enhancing the stability of data transmission,and improving throughput.
文摘As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.
基金This work was supported in part by the National Natural Science Foundation of China(62206109)the Fundamental Research Funds for the Central Universities(21620346)。
文摘With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations.
基金This work was supported by the Serbian Ministry of Science and Education(project TR-32022)by companies Telekom Srbija and Informatika.
文摘Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.
基金supported by the following funds:Defense Industrial Technology Development Program Grant:G20210513Shaanxi Provincal Department of Science and Technology Grant:2021KW-07Shaanxi Provincal Department of Science and Technology Grant:2022 QFY01-14.
文摘In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.
基金supported by the National Natural Science Foundation of China (No.62102046,62072249,62072056)JinWang,YongjunRen,and Jinbin Hu receive the grant,and the URLs to the sponsors’websites are https://www.nsfc.gov.cn/.This work is also funded by the National Science Foundation of Hunan Province (No.2022JJ30618,2020JJ2029).
文摘In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively.
基金supported by National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation(Grant No.M21034)BUPT Excellent Ph.D Students Foundation(Grant No.CX2023218)。
文摘With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.
基金This work is supported by Jiangsu Traditional Chinese Medicine Science and Technology Development Project(No.MS2021058)Natural Science Foundation of Nanjing University of Chinese Medicine(No.XZR2020062)+2 种基金Suzhou Municipal Science and Technology Bureau Supporting Project(No.SKY2022072)Open Project of Zhenjiang Traditional Chinese Medicine Spleen and Stomach Diseases Clinical Medicine Research Center(No.SSPW2022-KF08)Changshu Municipal Science and Technology Bureau Supporting Project(No.CS202030).
文摘1Background:Irritable bowel syndrome(IBS)is a disorder of bowel function,and diarrhea-predominant irritable bowel syndrome(IBS-D)is the most common.The current treatment for IBS-D is focused on improving patients’gastrointestinal-related symptoms,but there are limitations such as unstable effects and adverse drug reactions.Acupuncture and moxibustion exerts advantages in treating IBS-D.They include several forms,of which moxibustion is one of the most commonly used.And moxibustion is a common way used in treating IBS-D,but there is a lack of relevant evidence-based medical research data.This protocol aims to compare the efficacy of moxibustion(mild-warm moxibustion)in treating IBS-D(spleen deficiency and dampness excess syndrome)with the first-line treatment.Methods:In this prospective,parallel,randomized controlled trial(RCT)protocol,patients will be randomly allocated for 4-week treatment or control therapies and then 4-week follow-up in both groups.We will use Irritable Bowel Syndrome-Symptom Severity Scale(IBS-SSS)score,Irritable Bowel Syndrome-Quality of Life(IBS-QOL)score,serum brain-gut peptide levels,and traditional Chinese medicine(TCM)syndrome scale score to produce more evidence on IBS-D treatment with moxibustion.Finally,we will use SPSS 22.0 software to statistically analyze the data.Discussion:Mild-warm moxibustion is a complementary alternative therapy that fits with the pathogenesis of IBS-D.We hope to see more clinical evidence for mild-warm moxibustion against IBS-D that this RCT supported.
文摘In the era of big data,the construction and implementation of a quality control audit system are particularly crucial.This article delves into the impact of big data technology on quality control auditing,establishes a quality control auditing system in the big data era,and elucidates the pathway to realizing this system.Through the application of big data technology to quality control audits,there is an enhancement in audit efficiency,the attainment of more accurate risk assessment,and the provision of robust support for the sustainable development of enterprises.
文摘This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative risk management approaches.This article proposes response strategies from four key aspects:establishing a proactive risk management culture,building a foundation in technology and data,conducting big data-driven risk analysis,and implementing predictive analysis and real-time monitoring.State-owned enterprises can foster a proactive risk management culture by cultivating employee risk awareness,demonstrating leadership,and establishing transparency and open communication.Additionally,data integration and analysis,leveraging the latest technology,are crucial factors that can help companies better identify risks and opportunities.
基金supported by the National Science Foundation(NSF)CBET,Fluid Dynamics CAREER program(Grant No.2046160),program manager Ron Joslin.
文摘With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations,machine learning(ML)models are poised to advance our understanding of the physics underpinning the interaction between the atmospheric boundary layer and wind turbine arrays,the generated wakes and their interactions,and wind energy harvesting.However,the majority of the existing ML models for predicting wind turbine wakes merely recreate Computational fluid dynamics(CFD)simulated data with analogous accuracy but reduced computational costs,thus providing surrogate models rather than enhanced data-enabled physics insights.Although ML-based surrogate models are useful to overcome current limitations associated with the high computational costs of CFD models,using ML to unveil processes from experimental data or enhance modeling capabilities is deemed a potential research direction to pursue.In this letter,we discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations,along with new promising research strategies.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
文摘Advances in technology require upgrades in the law. One such area involves data brokers, which have thus far gone unregulated. Data brokers use artificial intelligence to aggregate information into data profiles about individual Americans derived from consumer use of the internet and connected devices. Data profiles are then sold for profit. Government investigators use a legal loophole to purchase this data instead of obtaining a search warrant, which the Fourth Amendment would otherwise require. Consumers have lacked a reasonable means to fight or correct the information data brokers collect. Americans may not even be aware of the risks of data aggregation, which upends the test of reasonable expectations used in a search warrant analysis. Data aggregation should be controlled and regulated, which is the direction some privacy laws take. Legislatures must step forward to safeguard against shadowy data-profiling practices, whether abroad or at home. In the meantime, courts can modify their search warrant analysis by including data privacy principles.
文摘Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air quality challenges, particularly in urban centers. While outdoor air pollution has received considerable attention, the issue of indoor air quality remains underexplored yet equally critical. This study aims to develop a reliable, cost-effective, and user-friendly solution for continuous monitoring and reporting of indoor air quality, accessible from anywhere via a web interface. Addressing the urgent need for effective indoor air quality monitoring in urban hospitals, the research focuses on designing and implementing a smart indoor air quality monitoring system using Arduino technology. Employing an Arduino Uno, ESP8266 Wi-Fi module, and MQ135 gas sensor, the system collects real-time air quality data, transmits it to the ThingSpeak cloud platform, and visualizes it through a user-friendly web interface. This project offers a cost-effective, portable, and reliable solution for monitoring indoor air quality, aiming to mitigate health risks and promote a healthier living environment.
文摘In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.
基金supported by the National Key Research and Development Program of China(Nos.2020YFB1707900,2021YFB2700700)the National Natural Science Foundation of China(NSFC)(Grant No.62072035)+4 种基金the Open Research Projects of Zhejiang Lab(No.2020KE0AB04)CCF-Huawei Database System Innovation Research Plan(No.CCF-HuaweiDBIR2021007B)Ye Yuan is supported by the NSFC(Grant Nos.61932004,62225203,U21A20516)Xiaochun Yang is supported by the National Key Research and Development Program of China(No.2020YFB1707900)Guoren Wang is supported by the NSFC(Nos.61732003,U2001211).
文摘With the development of information technology and cloud computing,data sharing has become an important part of scientific research.In traditional data sharing,data is stored on a third-party storage platform,which causes the owner to lose control of the data.As a result,there are issues of intentional data leakage and tampering by third parties,and the private information contained in the data may lead to more significant issues.Furthermore,data is frequently maintained on multiple storage platforms,posing significant hurdles in terms of enlisting multiple parties to engage in data sharing while maintaining consistency.In this work,we propose a new architecture for applying blockchains to data sharing and achieve efficient and reliable data sharing among heterogeneous blockchains.We design a new data sharing transaction mechanism based on the system architecture to protect the security of the raw data and the processing process.We also design and implement a hybrid concurrency control protocol to overcome issues caused by the large differences in blockchain performance in our system and to improve the success rate of data sharing transactions.We took Ethereum and Hyperledger Fabric as examples to conduct crossblockchain data sharing experiments.The results show that our system achieves data sharing across heterogeneous blockchains with reasonable performance and has high scalability.