An improved constrained (IC) steering law for single gimbal control moment gyros (SGCMGs) with deformed pyramid configuration (DPC) is proposed, First of all, the original system with five pyramid configuration ...An improved constrained (IC) steering law for single gimbal control moment gyros (SGCMGs) with deformed pyramid configuration (DPC) is proposed, First of all, the original system with five pyramid configuration (FPC) whose two adjacent gyros are in failure state is reconfigured as a degraded system with DPC. Then, the singular angular momentum hypersurfaces of the original and the degraded systems are plotted via the singular angular momentum equa- tion of SGCMGs. Based on singular surfaces, the differences between FPC and DPC in singularity and momentum envelope are obtained directly, which provide an important reference for steering law design of DPC. Finally, an IC steering law is designed and applied to DPC. The simulation results demonstrate that the IC steering law has advantages in simplicity of calculation, avoidance of singularity and exactness of output torque, which endow the degraded system with fine controllability in a restricted workspace.展开更多
基金supported by the National Natural Science Foundation of China (10372011)
文摘An improved constrained (IC) steering law for single gimbal control moment gyros (SGCMGs) with deformed pyramid configuration (DPC) is proposed, First of all, the original system with five pyramid configuration (FPC) whose two adjacent gyros are in failure state is reconfigured as a degraded system with DPC. Then, the singular angular momentum hypersurfaces of the original and the degraded systems are plotted via the singular angular momentum equa- tion of SGCMGs. Based on singular surfaces, the differences between FPC and DPC in singularity and momentum envelope are obtained directly, which provide an important reference for steering law design of DPC. Finally, an IC steering law is designed and applied to DPC. The simulation results demonstrate that the IC steering law has advantages in simplicity of calculation, avoidance of singularity and exactness of output torque, which endow the degraded system with fine controllability in a restricted workspace.