With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ...With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.展开更多
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches,including surgery and chemotherapy.Spatio-temp...Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches,including surgery and chemotherapy.Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance,including spatio-temporal adjustability,minimally invasive,repetitive properties,etc.External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues.It is worth noting that the removability of external stimuli allows for on-demand treatment,which effectively reduces the occurrence of side effects.In this review,we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma,focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies.Moreover,the potential challenges regarding spatio-temporally controllable therapy for glioma are also described,aiming to provide insights into future advancements in this field and their potential clinical applications.展开更多
In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose condition...In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS. The above conditions are derived based on the Markov parameters of the CPS and elements of the system observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked, these conditions provide one with the minimum system knowledge needed to perform zero dynamics and controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing the zero dynamics and controllable attacks even if they have complete knowledge of the coding system. Finally, two illustrative numerical case studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed methodologies.展开更多
In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations we...In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.展开更多
Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the c...Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.展开更多
The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel...The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.展开更多
We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanorib...We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.展开更多
Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device...Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements.展开更多
Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR ...Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR sharingscheme, which employs a large attribute domain and a linear secret sharing structure (LSSS), the computationaloverhead of encryption and decryption reaches a lightweight constant level, and supports keyword search andpolicy hiding, which improves the high efficiency of medical data sharing. The dynamic accumulator technologyis utilized to enable data owners to flexibly authorize or revoke the access rights of data visitors to the datato achieve controllability of the data. Meanwhile, the data is re-encrypted by Intel Software Guard Extensions(SGX) technology to realize resistance to offline dictionary guessing attacks. In addition, blockchain technology isutilized to achieve credible accountability for abnormal behaviors in the sharing process. The experiments reflectthe obvious advantages of the scheme in terms of encryption and decryption computation overhead and storageoverhead, and theoretically prove the security and controllability in the sharing process, providing a feasible solutionfor the safe and efficient sharing of EMR.展开更多
MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structure...MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.展开更多
The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint s...The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.展开更多
Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photoca...Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.展开更多
The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders...The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders were investigated.It is found that Arabic gum can better adsorb on silver particles via chemical adsorption,and it shows the best dispersive effect among all the selected dispersants.The particle size of silver powders can be finely tuned from 0.34 to 4.09μm by adjusting pH values,while the morphology of silver powders can be tuned by changing the temperature.The silver powders with high tap density higher than 4.0 g/cm3 were successfully prepared in a wide temperature range of 21.8-70°C.Especially,the tap density is higher than 5.0 g/cm3 when the temperature is optimized to be 50°C.The facile process and high silver concentration of this method make it a promising way to prepare high quality silver powders for electronic paste.展开更多
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure...We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.展开更多
A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biom...A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biomedicine.The main concerns focus on the moderation of the approach,yield,and product quality.Herein,a modified approach,organic solvent-assisted intercalation and collection,was developed to prepare Ti_(3)C_(2)T_(x) flakes.The new approach simultaneously solves all the concerns,featuring a low requirement for facility(centrifugation speed<4000 rpm in whole process),gram-level preparation with remarkable yield(46.3%),a good electrical conductivity(8672 S cm^(−1)),an outstanding capacitive performance(352 F g^(−1)),and easy control over the dimension of Ti_(3)C_(2)T_(x) flakes(0.47–4.60μm^(2)).This approach not only gives a superb example for the synthesis of other MXene materials in laboratory,but sheds new light for the future mass production of Ti_(3)C_(2)T_(x) MXene.展开更多
The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To a...The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.展开更多
In the present work,we developed a micellar system of milk protein-surfactant(SDS)-graphene to prepare the graphene-based aerogels via hydrothermal and freeze-drying method,in which the novel surface-property of aerog...In the present work,we developed a micellar system of milk protein-surfactant(SDS)-graphene to prepare the graphene-based aerogels via hydrothermal and freeze-drying method,in which the novel surface-property of aerogels can be tuned with the decreasing of micellar size in the colloid systems resulting the improved specific surface area.The milk protein also severed as green and sustainable sources to introduce nitrogen heteroatoms into the aerogels.Subsequently,the aerogels were further graphitized and activated to fabricate N-doped porous nanocarbon at 600℃.The initial surface composition and structure of the aerogel,which was proved,has obvious impact on the final structure of the synthesized nanocarbon materials,and thus influence their electrochemical activity.The optimized nanocarbon materials(MGPC-5),with enhanced specific surface area,degree of graphitization,and nitrogen doping,exhibited excellent capacitance performance and stability in both three-electrode system(518.8 F/g at a current density of 0.1 A/g)and symmetrical electrode system(120.8 F/g at current density of 0.1 A/g and with^95%capacitance retention after 5000 cycles of charging and discharging at 3 A/g)in KOH.The assembled supercapacitor also shows ideal capacitive properties in series and parallel configurations.Tested with a stable 1.6 V windows in Li2SO4 electrolyte,the symmetric supercapacitor cell exhibits a high energy density up to 36.7 W h/kg.The present work provides a feasible fabrication method for high-performance supercapacitor based on graphene and biomass derived carbon,the proposed surfaceproperty regulation and supercapacitor performance improvement strategy may also shed light on other energy related materials or system.展开更多
The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was e...The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was established and based on relevant analysis,the original model could be transformed by minimax method.Then,the optimal order quantity and production quantity influenced by service level constraint were analyzed and the boundary of optimal order quantity and production quantity was given.According to this boundary,the effective method and tactics were put forward to solve the transformed model.In case analysis,the optimal expected total cost of two-echelon inventory can be obtained and it was analyzed how service level constraint and safety factor influence the optimal expected total cost of two-echelon inventory.The results show that the optimal expected total cost of two-echelon inventory is constrained by the higher constraint between service level constraint and safety factor.展开更多
Nickel oxide(NiO)hollow microspheres with hierarchical structure were fabricated through a process consisting of a self-assembling,hydrothermal reaction and calcination.The prepared NiO hollow microspheres composed of...Nickel oxide(NiO)hollow microspheres with hierarchical structure were fabricated through a process consisting of a self-assembling,hydrothermal reaction and calcination.The prepared NiO hollow microspheres composed of many nanoflakes,are about 2-3μm in diameter.The length of the NiO flakes,having clear edges,is about 500-700 nm,while the thickness is only about 40-50 nm.This indicates that the NiO microspheres possess a hierarchical structure that can provide porous channels to facilitate the transmission of both electrons and electrolyte ions.NiO microspheres exhibit a high specific capacitance of about 1340 F/g at a current density of 1 A/g and high capacitance retention about 96.5%after 1000 cycles.What’s more,the conductive mechanism of nickel oxide for electrochemical capacitor electrodes was also studied.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
基金National Natural Science Foundation of China(52004117,52174117 and 52074146)Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)Basic scientific research project of Liaoning Provincial Department of Education(JYTZD2023073).
文摘With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.
基金This work was supported by the National Natural Science Foundation of China(22374092,and 22104074)Natural Science Foundation of Shandong Province(ZR2022YQ10)+2 种基金Natural Science Foundation of Shandong Province(Major Basic Research Project)(ZR2023ZD44)Project of Shandong Provincial Laboratory(SYS202207)Youth Innovation Science and Technology Program of Higher Education Institution of Shandong Province(2022KJ338).
文摘Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches,including surgery and chemotherapy.Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance,including spatio-temporal adjustability,minimally invasive,repetitive properties,etc.External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues.It is worth noting that the removability of external stimuli allows for on-demand treatment,which effectively reduces the occurrence of side effects.In this review,we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma,focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies.Moreover,the potential challenges regarding spatio-temporally controllable therapy for glioma are also described,aiming to provide insights into future advancements in this field and their potential clinical applications.
基金the financial support received from NATO under the Emerging Security Challenges Division programthe support received from NPRP (10-0105-17017) from the Qatar National Research Fund (a member of Qatar Foundation)+1 种基金the support received from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Department of National Defence (DND) under the Discovery Grant and DND Supplemental Programssupported in part by funding from the Innovation for Defence Excellence and Security (IDEaS) program from the Department of National Defence (DND)。
文摘In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS. The above conditions are derived based on the Markov parameters of the CPS and elements of the system observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked, these conditions provide one with the minimum system knowledge needed to perform zero dynamics and controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing the zero dynamics and controllable attacks even if they have complete knowledge of the coding system. Finally, two illustrative numerical case studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed methodologies.
基金financially supported by the National Natural Science Foundation of China(Approval No.42172168).
文摘In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.
基金Supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (2019BT02H594)Sanya Technology Innovation Special Project (2022KJCX08)。
文摘Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174077 and 12174051)the Science Foundation of GuangDong Province (Grant No.2021A1515012363)GuangDong Basic and Applied Basic Research Foundation (Grant No.2022A1515110011)。
文摘We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.
基金This work was supported in part by Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies(JIAOT KF202204)in part by STI 2030—Major Projects under Grant 2022ZD0209200+2 种基金in part by National Natural Science Foundation of China under Grant 62374099,Grant 62022047in part by Beijing Natural Science-Xiaomi Innovation Joint Fund under Grant L233009in part by the Tsinghua-Toyota JointResearch Fund,in part by the Daikin-Tsinghua Union Program,in part sponsored by CIE-Tencent Robotics XRhino-Bird Focused Research Program.
文摘Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements.
基金the Natural Science Foundation of Hebei Province under Grant Number F2021201052.
文摘Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR sharingscheme, which employs a large attribute domain and a linear secret sharing structure (LSSS), the computationaloverhead of encryption and decryption reaches a lightweight constant level, and supports keyword search andpolicy hiding, which improves the high efficiency of medical data sharing. The dynamic accumulator technologyis utilized to enable data owners to flexibly authorize or revoke the access rights of data visitors to the datato achieve controllability of the data. Meanwhile, the data is re-encrypted by Intel Software Guard Extensions(SGX) technology to realize resistance to offline dictionary guessing attacks. In addition, blockchain technology isutilized to achieve credible accountability for abnormal behaviors in the sharing process. The experiments reflectthe obvious advantages of the scheme in terms of encryption and decryption computation overhead and storageoverhead, and theoretically prove the security and controllability in the sharing process, providing a feasible solutionfor the safe and efficient sharing of EMR.
基金supported by the National Natural Science Foundation of China(21303186)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA07020300)~~
文摘MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.
文摘The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.
基金supported by the National Natural Science Foundation of China(21862002,41663012)the Innovation Team Project of North Minzu University(YCX18082)the Scientific Research Project of North Minzu University(2016 HG-KY 06)~~
文摘Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.
基金Project(2014DFA90520)supported by the International Cooperation Program of Ministry of Science and Technology of ChinaProject(2013A090100003)supported by the Production,Teaching and Research Program of Guangdong Province,ChinaProject(2013DY048)supported by the Science and Technology Cooperation Program of Daye Nonferrous Metals Group,China
文摘The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders were investigated.It is found that Arabic gum can better adsorb on silver particles via chemical adsorption,and it shows the best dispersive effect among all the selected dispersants.The particle size of silver powders can be finely tuned from 0.34 to 4.09μm by adjusting pH values,while the morphology of silver powders can be tuned by changing the temperature.The silver powders with high tap density higher than 4.0 g/cm3 were successfully prepared in a wide temperature range of 21.8-70°C.Especially,the tap density is higher than 5.0 g/cm3 when the temperature is optimized to be 50°C.The facile process and high silver concentration of this method make it a promising way to prepare high quality silver powders for electronic paste.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10674047,10804031,10904037,10904060,10974055,11034002,and61205198)the National Key Basic Research and Development Program of China(Grant Nos.2006CB921604 and 2011CB921602)+2 种基金the Basic Key Program of Shanghai Municipality,China(Grant No.07JC14017)the Fundamental Research Funds for the Central Universitiesthe Shanghai Leading Academic Discipline Project,China(Grant No.B408)
文摘We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.
基金This work was financially supported by National Natural Science Foundation of China(No.51903197)Wuhu and Xidian University special fund for industry-universityresearch cooperation(No.XWYCXY-012020012)+3 种基金Open Fund of Zhijiang Lab(2021MC0AB02)China Postdoctoral Science Foundation(2019TQ02422019M660061XB)the Fundamental Research Funds for the Central Universities(JC2110,JB211305).
文摘A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biomedicine.The main concerns focus on the moderation of the approach,yield,and product quality.Herein,a modified approach,organic solvent-assisted intercalation and collection,was developed to prepare Ti_(3)C_(2)T_(x) flakes.The new approach simultaneously solves all the concerns,featuring a low requirement for facility(centrifugation speed<4000 rpm in whole process),gram-level preparation with remarkable yield(46.3%),a good electrical conductivity(8672 S cm^(−1)),an outstanding capacitive performance(352 F g^(−1)),and easy control over the dimension of Ti_(3)C_(2)T_(x) flakes(0.47–4.60μm^(2)).This approach not only gives a superb example for the synthesis of other MXene materials in laboratory,but sheds new light for the future mass production of Ti_(3)C_(2)T_(x) MXene.
基金This work was funded by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07201003)the National Natural Science Foundation of China(51961125101)the Science and Technology Project of Zhejiang Province(2018C03003).
文摘The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.
基金financial support from the NSFC of China(21761132010,91645114 and 21573256)the Youth Innovation Promotion Association,CAS,China。
文摘In the present work,we developed a micellar system of milk protein-surfactant(SDS)-graphene to prepare the graphene-based aerogels via hydrothermal and freeze-drying method,in which the novel surface-property of aerogels can be tuned with the decreasing of micellar size in the colloid systems resulting the improved specific surface area.The milk protein also severed as green and sustainable sources to introduce nitrogen heteroatoms into the aerogels.Subsequently,the aerogels were further graphitized and activated to fabricate N-doped porous nanocarbon at 600℃.The initial surface composition and structure of the aerogel,which was proved,has obvious impact on the final structure of the synthesized nanocarbon materials,and thus influence their electrochemical activity.The optimized nanocarbon materials(MGPC-5),with enhanced specific surface area,degree of graphitization,and nitrogen doping,exhibited excellent capacitance performance and stability in both three-electrode system(518.8 F/g at a current density of 0.1 A/g)and symmetrical electrode system(120.8 F/g at current density of 0.1 A/g and with^95%capacitance retention after 5000 cycles of charging and discharging at 3 A/g)in KOH.The assembled supercapacitor also shows ideal capacitive properties in series and parallel configurations.Tested with a stable 1.6 V windows in Li2SO4 electrolyte,the symmetric supercapacitor cell exhibits a high energy density up to 36.7 W h/kg.The present work provides a feasible fabrication method for high-performance supercapacitor based on graphene and biomass derived carbon,the proposed surfaceproperty regulation and supercapacitor performance improvement strategy may also shed light on other energy related materials or system.
基金Project(71102174,71372019)supported by the National Natural Science Foundation of ChinaProject(9123028)supported by the Beijing Natural Science Foundation of China+3 种基金Project(20111101120019)supported by the Specialized Research Fund for Doctoral Program of Higher Education of ChinaProject(11JGC106)supported by the Beijing Philosophy&Social Science Foundation of ChinaProjects(NCET-10-0048,NCET-10-0043)supported by the Program for New Century Excellent Talents in University of ChinaProject(2010YC1307)supported by Excellent Young Teacher in Beijing Institute of Technology of China
文摘The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was established and based on relevant analysis,the original model could be transformed by minimax method.Then,the optimal order quantity and production quantity influenced by service level constraint were analyzed and the boundary of optimal order quantity and production quantity was given.According to this boundary,the effective method and tactics were put forward to solve the transformed model.In case analysis,the optimal expected total cost of two-echelon inventory can be obtained and it was analyzed how service level constraint and safety factor influence the optimal expected total cost of two-echelon inventory.The results show that the optimal expected total cost of two-echelon inventory is constrained by the higher constraint between service level constraint and safety factor.
基金Project(51274248)supported by the National Natural Science Foundation of ChinaProject(201FA31440)supported by the International S&T Cooperation Program of China
文摘Nickel oxide(NiO)hollow microspheres with hierarchical structure were fabricated through a process consisting of a self-assembling,hydrothermal reaction and calcination.The prepared NiO hollow microspheres composed of many nanoflakes,are about 2-3μm in diameter.The length of the NiO flakes,having clear edges,is about 500-700 nm,while the thickness is only about 40-50 nm.This indicates that the NiO microspheres possess a hierarchical structure that can provide porous channels to facilitate the transmission of both electrons and electrolyte ions.NiO microspheres exhibit a high specific capacitance of about 1340 F/g at a current density of 1 A/g and high capacitance retention about 96.5%after 1000 cycles.What’s more,the conductive mechanism of nickel oxide for electrochemical capacitor electrodes was also studied.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.