In 2000,the small bowel capsule revolutionized the management of patients with small bowel disorders.Currently,the technological development achieved by the new models of double-headed endoscopic capsules,as miniaturi...In 2000,the small bowel capsule revolutionized the management of patients with small bowel disorders.Currently,the technological development achieved by the new models of double-headed endoscopic capsules,as miniaturized devices to evaluate the small bowel and colon[pan-intestinal capsule endoscopy(PCE)],makes this non-invasive procedure a disruptive concept for the management of patients with digestive disorders.This technology is expected to identify which patients will require conventional invasive endoscopic procedures(colonoscopy or balloon-assisted enteroscopy),based on the lesions detected by the capsule,i.e.,those with an indication for biopsies or endoscopic treatment.The use of PCE in patients with inflammatory bowel diseases,namely Crohn’s disease,as well as in patients with iron deficiency anaemia and/or overt gastrointestinal(GI)bleeding,after a non-diagnostic upper endoscopy(esophagogastroduodenoscopy),enables an effective,safe and comfortable way to identify patients with relevant lesions,who should undergo subsequent invasive endoscopic procedures.The recent development of magnetically controlled capsule endoscopy to evaluate the upper GI tract,is a further step towards the possibility of an entirely non-invasive assessment of all the segments of the digestive tract,from mouth-to-anus,meeting the expectations of the early developers of capsule endoscopy.展开更多
BACKGROUND Traditional esophagogastroduodenoscopy(EGD),an invasive examination method,can cause discomfort and pain in patients.In contrast,magnetically controlled capsule endoscopy(MCE),a noninvasive method,is being ...BACKGROUND Traditional esophagogastroduodenoscopy(EGD),an invasive examination method,can cause discomfort and pain in patients.In contrast,magnetically controlled capsule endoscopy(MCE),a noninvasive method,is being applied for the detection of stomach and small intestinal diseases,but its application in treating esophageal diseases is not widespread.AIM To evaluate the safety and efficacy of detachable string MCE(ds-MCE)for the diagnosis of esophageal diseases.METHODS Fifty patients who had been diagnosed with esophageal diseases were pros-pectively recruited for this clinical study and underwent ds-MCE and conven-tional EGD.The primary endpoints included the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of ds-MCE for patients with esophageal diseases.The secondary endpoints consisted of visualizing the esophageal and dentate lines,as well as the subjects'tolerance of the procedure.RESULTS Using EGD as the gold standard,the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of ds-MCE for esophageal disease detection were 85.71%,86.21%,81.82%,89.29%,and 86%,respectively.ds-MCE was more comfortable and convenient than EGD was,with 80%of patients feeling that ds-MCE examination was very comfortable or comfortable and 50%of patients believing that detachable string v examination was very convenient.CONCLUSION This study revealed that ds-MCE has the same diagnostic effects as traditional EGD for esophageal diseases and is more comfortable and convenient than EGD,providing a novel noninvasive method for treating esophageal diseases.展开更多
Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study...Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study of voltage control magnetism because of its excellent piezoelectric properties.However,most of the research based on PMN-PT only studies the influence of a single tensile(or compressive)stress on the magnetic properties due to the asymmetry of strain.In this work,we show the effect of different strains on the magnetic anisotropy of an Fe_(19)Ni_(81)/(011)PMN-PT heterojunction.More importantly,the(011)cut PMN-PT generates non-volatile strain,which provides an advantage when investigating the voltage manipulation of RF/microwave magnetic devices.As a result,a ferromagnetic resonance field tunability of 70 Oe is induced in our sample by the non-volatile strain.Our results provide new possibilities for novel voltage adjustable RF/microwave magnetic devices and spintronic devices.展开更多
Recent progress in the electrical control of magnetism in oxides,with profound physics and enormous potential applications,is reviewed and illustrated.In the first part,we provide a comprehensive summary of the electr...Recent progress in the electrical control of magnetism in oxides,with profound physics and enormous potential applications,is reviewed and illustrated.In the first part,we provide a comprehensive summary of the electrical control of magnetism in the classic multiferroic heterostructures and clarify the various mechanisms lying behind them.The second part focuses on the novel technique of electric double layer gating for driving a significant electronic phase transition in magnetic oxides by a small voltage.In the third part,electric field applied on ordinary dielectric oxide is used to control the magnetic phenomenon originating from charge transfer and orbital reconstruction at the interface between dissimilar correlated oxides.At the end,we analyze the challenges in electrical control of magnetism in oxides,both the mechanisms and practical applications,which will inspire more in-depth research and advance the development in this field.展开更多
Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the g...Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm.展开更多
The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is avai...The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is available, which can significantly improve the response speed, performances, and application scope of magnetic controllable reactor.展开更多
The conditions of heating and cooling of piercing mandrels made of 4X5MFS steel of a three-roll screw mill 30-80 in the production of a closed cavity of steel vessels of small volume are determined.It is established t...The conditions of heating and cooling of piercing mandrels made of 4X5MFS steel of a three-roll screw mill 30-80 in the production of a closed cavity of steel vessels of small volume are determined.It is established that multiple cycles of heating up to 600℃ and cooling with water up to 80℃ for about 7 seconds/1 cycle lead to the formation of ridges,shells and cracks on the surface and in the volume of the tool.The loss of structural strength of the material leads to the breakdown of the mandrel during the stitching process.The technique and equipment of magnetic powder control have been developed to establish the dynamics of the growth of internal and external defects of mandrels.An equation is obtained that allows determining the increase in the number of defects in the sewing tool of a screw rolling mill.The technology of non-destructive testing made it possible to develop a rational plan for replacing the sewing mandrels,which allows for predicting the appearance of defects leading to a complex breakdown of the deforming tool at the NPO Pribor machine-building enterprise.展开更多
The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with r...The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.展开更多
To realize stable rotating spray transfer in the region of high constant current is the key of realizing high deposition rate MAG welding process without helium in shielding gas and extending the welding current rang...To realize stable rotating spray transfer in the region of high constant current is the key of realizing high deposition rate MAG welding process without helium in shielding gas and extending the welding current range of traditional MAG welding process. In this paper, the magnetic control mechanism of the rotating spray transfer is stated and mathematical model is given. Theoretic basis is established, which implements high deposition rate MAG welding process with magnetic control instead of helium in shielding gas.展开更多
AIM To design a miniature magnetically anchored and controlled camera system to reduce the number of trocars which are required for laparoscopy.METHODS The system consists of a miniature magnetically anchored camera w...AIM To design a miniature magnetically anchored and controlled camera system to reduce the number of trocars which are required for laparoscopy.METHODS The system consists of a miniature magnetically anchored camera with a 30° downward angle, an external magnetically anchored unit, and a vision output device. The camera weighs 12 g, measures Φ10.5 mm × 55 mm and has two magnets, a vision model, a light source, and a metal hexagonal nut. To test the prototype, the camera was inserted through a 12-mm conventional trocar in an ex vivo real liver laparoscopic training system. A trocar-less laparoscopic cholecystectomy was performed 6 times using a 12-mm and a 5-mm conventional trocar. In addition, the same procedure was performed in four canine models.RESULTS Both procedures were successfully performed using only two conventional laparoscopic trocars. The cholecystectomy was completed without any major complication in 42 min(38-45 min) in vitro and in 50 min(45-53 min) using an animal model. This camera was anchored and controlled by an external unit magnetically anchored on the abdominal wall. The camera could generate excellent image. with no instrument collisions.CONCLUSION The camera system we designed provides excellent optics and can be easily maneuvered. The number of conventional trocars is reduced without adding technical difficulties.展开更多
An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the mag...An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application.展开更多
A dynamic model of magnetic levitation control system with nonlinear magnetic force and feedback control is presented. Because of nonlinear magnetic force, the complex dynamic behavior will be shown in the system (cod...A dynamic model of magnetic levitation control system with nonlinear magnetic force and feedback control is presented. Because of nonlinear magnetic force, the complex dynamic behavior will be shown in the system (codimension two bifurcation, Hopf bifurcation, heteroclinic bifurcation). By theoretical analysis, it is shown that the design of parameters has a close relation with the systems stability; the range of selected parameters is achieved when the controller system is stable, based on the condition of bifurcation parameters, bifurcation curve, bifurcation set and phase portraits. From the simulating of magnetic flywheel system, the complex dynamic behavior is shown, and the result is in correspondence with the theoretics. It is of great theoretic importance to improve design and stable control for the nonlinear magnetic levitation control system.展开更多
Liquid metal(LM) has potential applications in flexible electronics due to its high electrical conductivity and high flexibility. However, common methods of printing LM circuits on soft substrates lack controllability...Liquid metal(LM) has potential applications in flexible electronics due to its high electrical conductivity and high flexibility. However, common methods of printing LM circuits on soft substrates lack controllability, precision, and the ability to repair a damaged circuit. In this paper, we propose a method that uses a magnetic field to guide a magnetic LM(MLM) droplet to print and repair a flexible LM circuit on a femtosecond(fs) laser-patterned silicone surface.After mixing magnetic iron(Fe) particles into LM, the movement of the resultant MLM droplet could be controlled by a magnetic field. A patterned structure composed of the untreated flat domain and the LM-repellent rough microstructure produced by fs laser ablation was prepared on the silicone substrate. As an MLM droplet was guided onto the designed pattern, a soft LM circuit with smooth, uniform, and high-precision LM lines was obtained. Interestingly, the MLM droplet could also be guided to repair the circuit broken LM lines, and the repaired circuit maintained its original electrical properties. A flexible tensile sensor was prepared based on the printed LM circuit, which detected the bending degree of a finger.展开更多
Based on the experimental device which is a non-uniform magnetic field to trap an atom, we show how to obtain a certain velocity of a Bose gas by controlling the magnetic coils. By comparing the relationship of the di...Based on the experimental device which is a non-uniform magnetic field to trap an atom, we show how to obtain a certain velocity of a Bose gas by controlling the magnetic coils. By comparing the relationship of the different current supply and delay time versus the ultimate velocity of the atom, we theoretically predict the method of accelerating the gases to an expected velocity. This method is of great convenience and significance for the applications in cold atom physics and precision measurements.展开更多
The large current generated by starting directly of super large capacity and high voltage induction motor would have a huge impact on the grid as well as the motor itself.The variation of the power factor and electrom...The large current generated by starting directly of super large capacity and high voltage induction motor would have a huge impact on the grid as well as the motor itself.The variation of the power factor and electromagnetic torque during direct start of motors with different capacity and voltage levels are obtained.Aiming at the problem that the secondary impact of auto-transformer starter is too large and the cost of magnetic control starter is too high,the auto-transformer and magnetic control soft start method of super large capacity and high voltage motor is proposed and the basic working principle is analyzed.The calculation formula of cost for magnetic control soft starter and auto-transformer and magnetic control soft starter is deduced,and specific examples are analyzed and compared.It is concluded that the choice of auto-transformer with appropriate tapping ratio can greatly reduce the cost of auto-transformer and magnetic control soft starter compared with the other one.Finally,the simulation and experiment results show that the start method can effectively avoid secondary current impact and constrain the motor starting current to less than 2.5 times the rated current.展开更多
Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the ...Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.展开更多
As the most important style of reactive power compensation system, the research and design control system of static synchronous compensator (STATCOM) is an important aspect of keeping stable and normal operation. This...As the most important style of reactive power compensation system, the research and design control system of static synchronous compensator (STATCOM) is an important aspect of keeping stable and normal operation. This paper analyzes the influences of bias magnetic to STATCOM, and proposes an effective magnetic bias control method and program realization, so reduced to producing two harmonics. It improves the quality and reliability of STATCOM output voltage;Finally, the tests are conducted in the ±500 kVar STATCOM, and the results show the validity and necessity of this compensation method.展开更多
The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase wit...The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase with calculated lattice parameters of a=0.57431 nm at 313 K. It exhibits a structure transition from parent phase to martensite during cooling. The martensitic phase in Co50Ni20Ga30 ribbon is tetragonal structure with lattice parameters of a=b=0.5422 nm and c=0.6401 nm. (c/a>1). According to the changing of diffraction intensity for martensite and the change of ac magnetic susceptibility, the process of the martensitic transformation can be divided into three parts during cooling from 283 K to 213 K. When the temperature decreasing sequentially from 193 K to 110 K, the structure of the martensite has a change in which the a-axis decreases and c-axis increases. The morphologies of selfaccommodation were observeds. The parallelogram morphology, the diamond morphology and the fork morphology were found.展开更多
The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellit...The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.展开更多
文摘In 2000,the small bowel capsule revolutionized the management of patients with small bowel disorders.Currently,the technological development achieved by the new models of double-headed endoscopic capsules,as miniaturized devices to evaluate the small bowel and colon[pan-intestinal capsule endoscopy(PCE)],makes this non-invasive procedure a disruptive concept for the management of patients with digestive disorders.This technology is expected to identify which patients will require conventional invasive endoscopic procedures(colonoscopy or balloon-assisted enteroscopy),based on the lesions detected by the capsule,i.e.,those with an indication for biopsies or endoscopic treatment.The use of PCE in patients with inflammatory bowel diseases,namely Crohn’s disease,as well as in patients with iron deficiency anaemia and/or overt gastrointestinal(GI)bleeding,after a non-diagnostic upper endoscopy(esophagogastroduodenoscopy),enables an effective,safe and comfortable way to identify patients with relevant lesions,who should undergo subsequent invasive endoscopic procedures.The recent development of magnetically controlled capsule endoscopy to evaluate the upper GI tract,is a further step towards the possibility of an entirely non-invasive assessment of all the segments of the digestive tract,from mouth-to-anus,meeting the expectations of the early developers of capsule endoscopy.
基金the Science and Technology Commission of Shanghai,No.18DZ1930309.
文摘BACKGROUND Traditional esophagogastroduodenoscopy(EGD),an invasive examination method,can cause discomfort and pain in patients.In contrast,magnetically controlled capsule endoscopy(MCE),a noninvasive method,is being applied for the detection of stomach and small intestinal diseases,but its application in treating esophageal diseases is not widespread.AIM To evaluate the safety and efficacy of detachable string MCE(ds-MCE)for the diagnosis of esophageal diseases.METHODS Fifty patients who had been diagnosed with esophageal diseases were pros-pectively recruited for this clinical study and underwent ds-MCE and conven-tional EGD.The primary endpoints included the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of ds-MCE for patients with esophageal diseases.The secondary endpoints consisted of visualizing the esophageal and dentate lines,as well as the subjects'tolerance of the procedure.RESULTS Using EGD as the gold standard,the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of ds-MCE for esophageal disease detection were 85.71%,86.21%,81.82%,89.29%,and 86%,respectively.ds-MCE was more comfortable and convenient than EGD was,with 80%of patients feeling that ds-MCE examination was very comfortable or comfortable and 50%of patients believing that detachable string v examination was very convenient.CONCLUSION This study revealed that ds-MCE has the same diagnostic effects as traditional EGD for esophageal diseases and is more comfortable and convenient than EGD,providing a novel noninvasive method for treating esophageal diseases.
文摘Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study of voltage control magnetism because of its excellent piezoelectric properties.However,most of the research based on PMN-PT only studies the influence of a single tensile(or compressive)stress on the magnetic properties due to the asymmetry of strain.In this work,we show the effect of different strains on the magnetic anisotropy of an Fe_(19)Ni_(81)/(011)PMN-PT heterojunction.More importantly,the(011)cut PMN-PT generates non-volatile strain,which provides an advantage when investigating the voltage manipulation of RF/microwave magnetic devices.As a result,a ferromagnetic resonance field tunability of 70 Oe is induced in our sample by the non-volatile strain.Our results provide new possibilities for novel voltage adjustable RF/microwave magnetic devices and spintronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51322101,51202125,and 51231004)the National Hi-tech Research and Development Project of China(Grant Nos.2014AA032904 and 2014AA032901)
文摘Recent progress in the electrical control of magnetism in oxides,with profound physics and enormous potential applications,is reviewed and illustrated.In the first part,we provide a comprehensive summary of the electrical control of magnetism in the classic multiferroic heterostructures and clarify the various mechanisms lying behind them.The second part focuses on the novel technique of electric double layer gating for driving a significant electronic phase transition in magnetic oxides by a small voltage.In the third part,electric field applied on ordinary dielectric oxide is used to control the magnetic phenomenon originating from charge transfer and orbital reconstruction at the interface between dissimilar correlated oxides.At the end,we analyze the challenges in electrical control of magnetism in oxides,both the mechanisms and practical applications,which will inspire more in-depth research and advance the development in this field.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51571135,11274214 and 61434002the Special Funds of Shanxi Scholars Program under Grant No IRT1156+1 种基金Collaborative Innovation Center for Shanxi Advanced Permanent Materials and Technologythe Special Funds of the Ministry of Education of China under Grant No 20121404130001
文摘Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm.
文摘The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is available, which can significantly improve the response speed, performances, and application scope of magnetic controllable reactor.
文摘The conditions of heating and cooling of piercing mandrels made of 4X5MFS steel of a three-roll screw mill 30-80 in the production of a closed cavity of steel vessels of small volume are determined.It is established that multiple cycles of heating up to 600℃ and cooling with water up to 80℃ for about 7 seconds/1 cycle lead to the formation of ridges,shells and cracks on the surface and in the volume of the tool.The loss of structural strength of the material leads to the breakdown of the mandrel during the stitching process.The technique and equipment of magnetic powder control have been developed to establish the dynamics of the growth of internal and external defects of mandrels.An equation is obtained that allows determining the increase in the number of defects in the sewing tool of a screw rolling mill.The technology of non-destructive testing made it possible to develop a rational plan for replacing the sewing mandrels,which allows for predicting the appearance of defects leading to a complex breakdown of the deforming tool at the NPO Pribor machine-building enterprise.
基金This work was supported by the National Natural Science Foundation of China under grant No.50177019by the Education Department of China under grant No.20040142004.
文摘The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.
文摘To realize stable rotating spray transfer in the region of high constant current is the key of realizing high deposition rate MAG welding process without helium in shielding gas and extending the welding current range of traditional MAG welding process. In this paper, the magnetic control mechanism of the rotating spray transfer is stated and mathematical model is given. Theoretic basis is established, which implements high deposition rate MAG welding process with magnetic control instead of helium in shielding gas.
基金Supported by National Natural Science Foundation of China(Major Instrumental Program)No.81127005the Science and Technology Innovation Project of Shaanxi Province,China,No.S2016TNGY0119
文摘AIM To design a miniature magnetically anchored and controlled camera system to reduce the number of trocars which are required for laparoscopy.METHODS The system consists of a miniature magnetically anchored camera with a 30° downward angle, an external magnetically anchored unit, and a vision output device. The camera weighs 12 g, measures Φ10.5 mm × 55 mm and has two magnets, a vision model, a light source, and a metal hexagonal nut. To test the prototype, the camera was inserted through a 12-mm conventional trocar in an ex vivo real liver laparoscopic training system. A trocar-less laparoscopic cholecystectomy was performed 6 times using a 12-mm and a 5-mm conventional trocar. In addition, the same procedure was performed in four canine models.RESULTS Both procedures were successfully performed using only two conventional laparoscopic trocars. The cholecystectomy was completed without any major complication in 42 min(38-45 min) in vitro and in 50 min(45-53 min) using an animal model. This camera was anchored and controlled by an external unit magnetically anchored on the abdominal wall. The camera could generate excellent image. with no instrument collisions.CONCLUSION The camera system we designed provides excellent optics and can be easily maneuvered. The number of conventional trocars is reduced without adding technical difficulties.
基金supported by the National Natural Science Foundation of China (21373138)Shanghai Sci. & Tech. Committee (12JC1407200)Program for Changjiang Scholars and Innovative Research Team in University (IRT1269)
文摘An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application.
文摘A dynamic model of magnetic levitation control system with nonlinear magnetic force and feedback control is presented. Because of nonlinear magnetic force, the complex dynamic behavior will be shown in the system (codimension two bifurcation, Hopf bifurcation, heteroclinic bifurcation). By theoretical analysis, it is shown that the design of parameters has a close relation with the systems stability; the range of selected parameters is achieved when the controller system is stable, based on the condition of bifurcation parameters, bifurcation curve, bifurcation set and phase portraits. From the simulating of magnetic flywheel system, the complex dynamic behavior is shown, and the result is in correspondence with the theoretics. It is of great theoretic importance to improve design and stable control for the nonlinear magnetic levitation control system.
基金supported by the National Science Foundation of China under the Grant No. 61875158the National Key Research and Development Program of China under the Grant No. 2017YFB1104700+1 种基金the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologiesthe Fundamental Research Funds for the Central Universities。
文摘Liquid metal(LM) has potential applications in flexible electronics due to its high electrical conductivity and high flexibility. However, common methods of printing LM circuits on soft substrates lack controllability, precision, and the ability to repair a damaged circuit. In this paper, we propose a method that uses a magnetic field to guide a magnetic LM(MLM) droplet to print and repair a flexible LM circuit on a femtosecond(fs) laser-patterned silicone surface.After mixing magnetic iron(Fe) particles into LM, the movement of the resultant MLM droplet could be controlled by a magnetic field. A patterned structure composed of the untreated flat domain and the LM-repellent rough microstructure produced by fs laser ablation was prepared on the silicone substrate. As an MLM droplet was guided onto the designed pattern, a soft LM circuit with smooth, uniform, and high-precision LM lines was obtained. Interestingly, the MLM droplet could also be guided to repair the circuit broken LM lines, and the repaired circuit maintained its original electrical properties. A flexible tensile sensor was prepared based on the printed LM circuit, which detected the bending degree of a finger.
基金supported by the National Basic Research Program of China(Grant No.2011CB921501)
文摘Based on the experimental device which is a non-uniform magnetic field to trap an atom, we show how to obtain a certain velocity of a Bose gas by controlling the magnetic coils. By comparing the relationship of the different current supply and delay time versus the ultimate velocity of the atom, we theoretically predict the method of accelerating the gases to an expected velocity. This method is of great convenience and significance for the applications in cold atom physics and precision measurements.
基金This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB0902904,in part by the Natural Science Foundation of Hubei Province under Grant 2016CFB448,and in part by the Shenzhen City Science and Technology Innovation Plan under Grant JCYJ20170306170937861,and in part by Wuhan City Science and Technology Program under Grant 2016070204020165.
文摘The large current generated by starting directly of super large capacity and high voltage induction motor would have a huge impact on the grid as well as the motor itself.The variation of the power factor and electromagnetic torque during direct start of motors with different capacity and voltage levels are obtained.Aiming at the problem that the secondary impact of auto-transformer starter is too large and the cost of magnetic control starter is too high,the auto-transformer and magnetic control soft start method of super large capacity and high voltage motor is proposed and the basic working principle is analyzed.The calculation formula of cost for magnetic control soft starter and auto-transformer and magnetic control soft starter is deduced,and specific examples are analyzed and compared.It is concluded that the choice of auto-transformer with appropriate tapping ratio can greatly reduce the cost of auto-transformer and magnetic control soft starter compared with the other one.Finally,the simulation and experiment results show that the start method can effectively avoid secondary current impact and constrain the motor starting current to less than 2.5 times the rated current.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB125003 and 2013GB114002)National Natural Science Foundation of China(No.11105044)
文摘Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.
文摘As the most important style of reactive power compensation system, the research and design control system of static synchronous compensator (STATCOM) is an important aspect of keeping stable and normal operation. This paper analyzes the influences of bias magnetic to STATCOM, and proposes an effective magnetic bias control method and program realization, so reduced to producing two harmonics. It improves the quality and reliability of STATCOM output voltage;Finally, the tests are conducted in the ±500 kVar STATCOM, and the results show the validity and necessity of this compensation method.
基金This study was supported by the National Natural Science Foundation of China grant No.50271023 the Natural Science Foundation of Hebei Province(No.503031).
文摘The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase with calculated lattice parameters of a=0.57431 nm at 313 K. It exhibits a structure transition from parent phase to martensite during cooling. The martensitic phase in Co50Ni20Ga30 ribbon is tetragonal structure with lattice parameters of a=b=0.5422 nm and c=0.6401 nm. (c/a>1). According to the changing of diffraction intensity for martensite and the change of ac magnetic susceptibility, the process of the martensitic transformation can be divided into three parts during cooling from 283 K to 213 K. When the temperature decreasing sequentially from 193 K to 110 K, the structure of the martensite has a change in which the a-axis decreases and c-axis increases. The morphologies of selfaccommodation were observeds. The parallelogram morphology, the diamond morphology and the fork morphology were found.
文摘The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.