This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefi...Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg^2+) and more elemental mercury (Hg^0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.展开更多
Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a ...Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation.展开更多
The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which wa...The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which was used instead of the round tundish, had been optimized. The results show that the residence time of the round tundish is short, its inclusion removal efficiency is too low, and it has more dead zones and an unreasonable flow field. Compared with the round tundish, the improved oval tundish with the optimized weir and dam has a better effect: its minimum residence time is prolonged by 38.1 s, the average residence time is prolonged by 233.4 s, its dead volume fraction decreases from 26% to 15%, and the ratio of plug volume fraction to dead volume fraction increases from 0.54 to 1.27. The inclusion removal efficiency also increases by 17.5%.展开更多
The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal...The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal in the tundish was evaluated by plant trials. The physical modeling results show that when combined with a baffle, the turbulence inhibitor, instead of the impact pad, can significantly improve the melt flow. A turbulence inhibitor with a longer length of inner cavity and without an extending lip at the top of the sidewall seems to be efficient in the improvement of the melt flow. Various types and designs of baffles all influence the flow characteristics significantly. The "V" type baffles are better than the straight baffles for flow control. The "V" type baffle with four inclined holes at the sidewall away from the stopper rods is better in melt flow control than the one with one inclined hole at each sidewall. The combination of a well-designed turbulence inhibitor and an appropriate baffle shows high efficiency on improving the melt flow and an optimal proposal was presented. Plant trials indicate that, compared with the original tundish configuration in prototype, the inclusions reduce by 42% and the inclusion distribution of individual strands is more similar with the optimal one. The optimal tundish configuration effectively improves the melt flow in the ten-strand billet caster tundish.展开更多
Abstract: Shape Memory Alloy (SMA) is a type of material that offers some unique characteristics for use in devices for vibration control applications. Based on SMA's material properties, fottr types of control de...Abstract: Shape Memory Alloy (SMA) is a type of material that offers some unique characteristics for use in devices for vibration control applications. Based on SMA's material properties, fottr types of control devices that incorporate NiTi SMA wires are introduced in this paper, which include three types of dampers (SMA damper, SMA-MR damper and SMA-friction damper) and one kind of isolation bearing (SMA-rubber bearing). Mechanical models of these devices and their experimental verifications are presented. To investigate the control performance of these devices, the SMA-MR damper and SMA-rubber bearing are applied to structures. The results show that the control devices could be effective in reducing the seismic response of structures.展开更多
Bitmap (BMP) is a widely used format in image processing. With the combination of the digital image processing and computer numerically controlled (NC) techniques, we developed a bitmap-based NC single-step and mu...Bitmap (BMP) is a widely used format in image processing. With the combination of the digital image processing and computer numerically controlled (NC) techniques, we developed a bitmap-based NC single-step and multi-dot method. An example was provided to illustrate the application and principle of this bitmap-based method in our newly innovated sandblasting glass NC sculpture system.展开更多
A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based o...A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained .展开更多
The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and brak...The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and braking synchronism, and alleviate longitudinal impulse.However, the characteristics of the controllable train-tail device such as exhaust area, exhaust duration and exhaust action time are not uniform in practice, and their effects on the longitudinal impulse of the train are not apparent,which is worth studying. In this work, according to the formation of the Datong-Qinhuangdao Railway, the train air brake and longitudinal dynamics simulation system(TABLDSS) is applied to establish a 20,000-ton combined train model with the controllable train-tail device, and the braking characteristics and the longitudinal impulse of the train are calculated synchronously with changing the air exhaust time, exhaust area, and action lag time under initial braking. The results show that the maximum coupler force of the combined train will decrease with the extension of the continuous exhaust time, while the total exhaust time of the controllable train-tail device remains unchanged;the maximum coupler force of the combined train reduces by32.5% with the exhaust area increasing from 70% to 140%;when the lag time between the controllable train-tail device and the master locomotive is more than 1.5 s, the maximum coupler force of the train increases along with the time difference enlargement.展开更多
This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature.On the basis of considering the main factors affectin...This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature.On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system control device,the thermodynamic model of air system control device is established based on the basic theory of laminar flow heat transfer and heat conduction theory.Then the piston motion characteristics and the thermodynamic characteristics of the air system control device seal are simulated.The simulation results show that the valve actuation dynamic time of piston is about 0.13 s in the actual working conditions,and the temperature effect on the dynamic response of the piston rod is only 5 ms when the inlet air temperature at 300 ℃ and 370 ℃.The maximum temperature of the air system control device sealing part is not more than 290 ℃ under long time working condition of compressor air entraining.The highest temperature of the sealing part can reach up to 340 ℃ when the air flow temperature reaches the limit temperature of 370 ℃,and the longest duration working temperature limit is not more than 14 s.Therefore,the selection of control device sealing material should consider the work characteristic of instantaneous temperature limit.展开更多
The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce s...The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.展开更多
In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh contro...In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh control device allows for efficient a priori and a posteriori mesh refinements.展开更多
Security in Ad Hoc network is an important issue under the opening circumstance of application service. Some protocols and models of security auditing have been proposed to ensure rationality of contracting strategy a...Security in Ad Hoc network is an important issue under the opening circumstance of application service. Some protocols and models of security auditing have been proposed to ensure rationality of contracting strategy and operating regulation and used to identify abnormal operation. Model of security auditing based on access control of devices will be advanced to register sign of devices and property of event of access control and to audit those actions. In the end, the model is analyzed and simulated.展开更多
Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of ...Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of slotted screencompletions and inflow control device (ICD) completions;moreover, an annular flow exists in the region betweenthe pipe and the borehole wall. On the basis of the principles of mass and momentum conservation, in the presentstudy, a coupling model considering the variable mass flow of the central tubing, the variable mass flow of theannular tubing and the reservoir seepage is implemented to simulate the wellbore–annulus–reservoir behaviorin the horizontal section of slotted-screen and ICD completions. In earlier models, only the central tubing variablemass flow and reservoir seepage flow were considered. The present results show that the closer the heel end, thegreater is the flow per unit length in the central tubing from the annulus. When external casing packers are notconsidered, the predicted production rate of the slotted screen completion, which is obtained using the variablemass flow model not taking into account the annulus flow, is 9.51% higher than the rate obtained using the (complete) model with annulus flow. In addition, the incomplete model forecasts the production of ICD completion ata 70.98% higher rate. Both models show that the pressure profile and flow profile of the borehole wall are relatively uniform in the wellbore–annulus–reservoir in horizontal wells.展开更多
In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,ef...In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,effectively reduces the structural response in the case of relatively small story drifts,which occur during earthquakes.A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted.From the experimental and analytical results,it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response,requires less energy input,operates with higher reliability,and can be manufactured at a lower cost and used in a wider range of engineering applications.展开更多
Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor functio...Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method.Through a series of novel design concepts,including the integration of a detecting circuit and an analog-to-digital converter,a miniaturized functional electrical stimulation circuit technique,a low-power super-regeneration chip for wireless receiving,and two wearable armbands,a prototype system has been established with reduced size,power,and overall cost.Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects,the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy.Test results showed that wrist flexion/extension,hand grasp,and finger extension could be reproduced with high accuracy and low latency.This system can build a bridge of information transmission between healthy limbs and paralyzed limbs,effectively improve voluntary participation of hemiplegic patients,and elevate efficiency of rehabilitation training.展开更多
Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form du...Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form due to the ease of valence variation of transition-metal elements.In this work, we reveal the reversible structural transition between SrVO3 and Sr2V2O7 films via thermal treatment in oxygen atmosphere or in vacuum. Based on this, Sr2V2O7 epitaxial films are successfully synthesized and studied. Property characterizations show that the semitransparent and metallic SrVO3 could reversibly switch into transparent and insulating Sr2V2O7, implying potential applications in controllable electronic and optical devices.展开更多
China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies o...China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies on substantial electricity generated by CFPPs,resulting in indirect CO_(2) emissions.The extent of CO_(2)emissions caused by APCDs in China remains uncertain.Here,using a plant-level dataset,we quantified the CO_(2)emissions associated with electricity consumption by APCDs in China's CFPPs.Our findings reveal a significant rise in CO_(2)emissions attributed to APCDs,increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020.Moreover,the contribution of APCDs to total CO_(2)emissions from coal-fired power generation escalated from 0.12%to 1.19%.Among the APCDs,desulfurization devices accounted for approximately 80%of the CO_(2)emissions,followed by dust removal and denitration devices.Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions,with Nei Mongol,Shanxi,and Shandong provinces projected to exhibit the highest emissions.Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.展开更多
Due to its great potential applications in thermal management,heat control,and quantum information,phononics has gained increasing attentions since the first publication in Rev.Mod.Phys.841045(2012).Many theoretical a...Due to its great potential applications in thermal management,heat control,and quantum information,phononics has gained increasing attentions since the first publication in Rev.Mod.Phys.841045(2012).Many theoretical and experimental progresses have been achieved in the past decade.In this paper,we first give a critical review of the progress in thermal diodes and transistors,especially in classical regime.Then,we give a brief introduction to the new developing research directions such as topological phononics and quantum phononics.In the third part,we discuss the potential applications.Last but not least,we point out the outlook and challenges ahead.展开更多
文摘This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
基金supported by the U.S.Agency for International Development (USAID) cooperation agreement(No.486-A-00-06-000140-00)
文摘Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg^2+) and more elemental mercury (Hg^0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
文摘Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation.
基金financially supported by the Key Special Project in the National Science & Technology Program during the Eleventh Five-Year Plan Period (No.2009ZX04014-061-7)
文摘The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which was used instead of the round tundish, had been optimized. The results show that the residence time of the round tundish is short, its inclusion removal efficiency is too low, and it has more dead zones and an unreasonable flow field. Compared with the round tundish, the improved oval tundish with the optimized weir and dam has a better effect: its minimum residence time is prolonged by 38.1 s, the average residence time is prolonged by 233.4 s, its dead volume fraction decreases from 26% to 15%, and the ratio of plug volume fraction to dead volume fraction increases from 0.54 to 1.27. The inclusion removal efficiency also increases by 17.5%.
基金supported by the National Natural Science Foundation of China(No.51474059,No.51204042)the Program for Liaoning Excellent Talents in University(No.LJQ2014031)the Fundamental Research Funds for the Central Universities(No.N140205003)
文摘The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal in the tundish was evaluated by plant trials. The physical modeling results show that when combined with a baffle, the turbulence inhibitor, instead of the impact pad, can significantly improve the melt flow. A turbulence inhibitor with a longer length of inner cavity and without an extending lip at the top of the sidewall seems to be efficient in the improvement of the melt flow. Various types and designs of baffles all influence the flow characteristics significantly. The "V" type baffles are better than the straight baffles for flow control. The "V" type baffle with four inclined holes at the sidewall away from the stopper rods is better in melt flow control than the one with one inclined hole at each sidewall. The combination of a well-designed turbulence inhibitor and an appropriate baffle shows high efficiency on improving the melt flow and an optimal proposal was presented. Plant trials indicate that, compared with the original tundish configuration in prototype, the inclusions reduce by 42% and the inclusion distribution of individual strands is more similar with the optimal one. The optimal tundish configuration effectively improves the melt flow in the ten-strand billet caster tundish.
基金National Natural Science Foundation of China Under Grant No.50178006Beijing Natural Science Foundation Under Grant No. 8042008 Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality
文摘Abstract: Shape Memory Alloy (SMA) is a type of material that offers some unique characteristics for use in devices for vibration control applications. Based on SMA's material properties, fottr types of control devices that incorporate NiTi SMA wires are introduced in this paper, which include three types of dampers (SMA damper, SMA-MR damper and SMA-friction damper) and one kind of isolation bearing (SMA-rubber bearing). Mechanical models of these devices and their experimental verifications are presented. To investigate the control performance of these devices, the SMA-MR damper and SMA-rubber bearing are applied to structures. The results show that the control devices could be effective in reducing the seismic response of structures.
基金the Scientific and Technological Research Project of Ningxia Autonomous Region(Grant No.2002-014-05)
文摘Bitmap (BMP) is a widely used format in image processing. With the combination of the digital image processing and computer numerically controlled (NC) techniques, we developed a bitmap-based NC single-step and multi-dot method. An example was provided to illustrate the application and principle of this bitmap-based method in our newly innovated sandblasting glass NC sculpture system.
文摘A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained .
基金China National Railway Group Co.,Ltd(N2020J037).
文摘The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and braking synchronism, and alleviate longitudinal impulse.However, the characteristics of the controllable train-tail device such as exhaust area, exhaust duration and exhaust action time are not uniform in practice, and their effects on the longitudinal impulse of the train are not apparent,which is worth studying. In this work, according to the formation of the Datong-Qinhuangdao Railway, the train air brake and longitudinal dynamics simulation system(TABLDSS) is applied to establish a 20,000-ton combined train model with the controllable train-tail device, and the braking characteristics and the longitudinal impulse of the train are calculated synchronously with changing the air exhaust time, exhaust area, and action lag time under initial braking. The results show that the maximum coupler force of the combined train will decrease with the extension of the continuous exhaust time, while the total exhaust time of the controllable train-tail device remains unchanged;the maximum coupler force of the combined train reduces by32.5% with the exhaust area increasing from 70% to 140%;when the lag time between the controllable train-tail device and the master locomotive is more than 1.5 s, the maximum coupler force of the train increases along with the time difference enlargement.
基金supported by the National Major Special Projects for Gas Engine and Aero Engine(No.2017-V-0013)the Aviation Funds(No.20150653006)the Fundamental Research Funds for the Central Universities(No.G2017KY0003)
文摘This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature.On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system control device,the thermodynamic model of air system control device is established based on the basic theory of laminar flow heat transfer and heat conduction theory.Then the piston motion characteristics and the thermodynamic characteristics of the air system control device seal are simulated.The simulation results show that the valve actuation dynamic time of piston is about 0.13 s in the actual working conditions,and the temperature effect on the dynamic response of the piston rod is only 5 ms when the inlet air temperature at 300 ℃ and 370 ℃.The maximum temperature of the air system control device sealing part is not more than 290 ℃ under long time working condition of compressor air entraining.The highest temperature of the sealing part can reach up to 340 ℃ when the air flow temperature reaches the limit temperature of 370 ℃,and the longest duration working temperature limit is not more than 14 s.Therefore,the selection of control device sealing material should consider the work characteristic of instantaneous temperature limit.
文摘The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.
文摘In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh control device allows for efficient a priori and a posteriori mesh refinements.
文摘Security in Ad Hoc network is an important issue under the opening circumstance of application service. Some protocols and models of security auditing have been proposed to ensure rationality of contracting strategy and operating regulation and used to identify abnormal operation. Model of security auditing based on access control of devices will be advanced to register sign of devices and property of event of access control and to audit those actions. In the end, the model is analyzed and simulated.
基金the Scientific Research and Technological Development Project of CNPC(2019D-4413).
文摘Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of slotted screencompletions and inflow control device (ICD) completions;moreover, an annular flow exists in the region betweenthe pipe and the borehole wall. On the basis of the principles of mass and momentum conservation, in the presentstudy, a coupling model considering the variable mass flow of the central tubing, the variable mass flow of theannular tubing and the reservoir seepage is implemented to simulate the wellbore–annulus–reservoir behaviorin the horizontal section of slotted-screen and ICD completions. In earlier models, only the central tubing variablemass flow and reservoir seepage flow were considered. The present results show that the closer the heel end, thegreater is the flow per unit length in the central tubing from the annulus. When external casing packers are notconsidered, the predicted production rate of the slotted screen completion, which is obtained using the variablemass flow model not taking into account the annulus flow, is 9.51% higher than the rate obtained using the (complete) model with annulus flow. In addition, the incomplete model forecasts the production of ICD completion ata 70.98% higher rate. Both models show that the pressure profile and flow profile of the borehole wall are relatively uniform in the wellbore–annulus–reservoir in horizontal wells.
文摘In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,effectively reduces the structural response in the case of relatively small story drifts,which occur during earthquakes.A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted.From the experimental and analytical results,it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response,requires less energy input,operates with higher reliability,and can be manufactured at a lower cost and used in a wider range of engineering applications.
基金supported by the National Natural Science Foundation of China,No.90307013,90707005,61534003the Science&Technology Pillar Program of Jiangsu Province in China,No.BE2013706
文摘Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method.Through a series of novel design concepts,including the integration of a detecting circuit and an analog-to-digital converter,a miniaturized functional electrical stimulation circuit technique,a low-power super-regeneration chip for wireless receiving,and two wearable armbands,a prototype system has been established with reduced size,power,and overall cost.Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects,the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy.Test results showed that wrist flexion/extension,hand grasp,and finger extension could be reproduced with high accuracy and low latency.This system can build a bridge of information transmission between healthy limbs and paralyzed limbs,effectively improve voluntary participation of hemiplegic patients,and elevate efficiency of rehabilitation training.
基金supported by the National Key R&D Program of China(No.2016YFA0300102)the National Natural Science Foundation of China(No.11675179,No.11434009,and No.11374010)+2 种基金the Fundamental Research Funds for the Central Universities(No.WK2340000065)partially carried out at the University of Science and Technology of China(USTC)center for Micro and Nanoscale Research and Fabricationthe support from the magnetic circular dichroism endstation at Hefei Light Source
文摘Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form due to the ease of valence variation of transition-metal elements.In this work, we reveal the reversible structural transition between SrVO3 and Sr2V2O7 films via thermal treatment in oxygen atmosphere or in vacuum. Based on this, Sr2V2O7 epitaxial films are successfully synthesized and studied. Property characterizations show that the semitransparent and metallic SrVO3 could reversibly switch into transparent and insulating Sr2V2O7, implying potential applications in controllable electronic and optical devices.
基金supported by the National Key Research and Development Program of China[grant number 2022YFC3105304]the National Natural Science Foundation of China[grant number 72348001]the National Social Science Fund of China[grant number 22&ZD108].
文摘China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies on substantial electricity generated by CFPPs,resulting in indirect CO_(2) emissions.The extent of CO_(2)emissions caused by APCDs in China remains uncertain.Here,using a plant-level dataset,we quantified the CO_(2)emissions associated with electricity consumption by APCDs in China's CFPPs.Our findings reveal a significant rise in CO_(2)emissions attributed to APCDs,increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020.Moreover,the contribution of APCDs to total CO_(2)emissions from coal-fired power generation escalated from 0.12%to 1.19%.Among the APCDs,desulfurization devices accounted for approximately 80%of the CO_(2)emissions,followed by dust removal and denitration devices.Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions,with Nei Mongol,Shanxi,and Shandong provinces projected to exhibit the highest emissions.Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.
基金supported by the National Natural Science Foundation of China(Grant No.62004211)Shenzhen Science and Technology Program(Grant No.RCBS20200714114858221)
文摘Due to its great potential applications in thermal management,heat control,and quantum information,phononics has gained increasing attentions since the first publication in Rev.Mod.Phys.841045(2012).Many theoretical and experimental progresses have been achieved in the past decade.In this paper,we first give a critical review of the progress in thermal diodes and transistors,especially in classical regime.Then,we give a brief introduction to the new developing research directions such as topological phononics and quantum phononics.In the third part,we discuss the potential applications.Last but not least,we point out the outlook and challenges ahead.