期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic 被引量:1
1
作者 Junyao Ji Xinao Ji +5 位作者 Ziyu Zhou Zhichao Dai Xuhui Chen Jie Zhang Zheng Jiang Hong Zhang 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期3-12,共10页
This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control l... This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control logic based on an on-chip delay-locked loop(DLL).The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter(CDAC)than the synchronous and asynchronous SAR ADC.Therefore,the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent.In addition,the fore-ground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter(FIR-BPF)based least-mean-square(LMS)algorithm in an off-chip FPGA(field programmable gate array).Fabricated in 40-nm CMOS process,the proto-type ADC achieves 94.02-dB spurious-free dynamic range(SFDR),and 75.98-dB signal-to-noise-and-distortion ratio(SNDR)for a 2.88-MHz input under 18-MSPS sampling rate. 展开更多
关键词 SAR ADC control logic reference ringing DAC incomplete settling
下载PDF
Enhanced Fuzzy Logic Control Model and Sliding Mode Based on Field Oriented Control of Induction Motor
2
作者 Alaa Tahhan Feyzullah Temurtaş 《World Journal of Engineering and Technology》 2024年第1期65-79,共15页
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo... In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology. 展开更多
关键词 Induction Motor Vector Control Fuzzy logic Control Sliding Mode
下载PDF
Programmable Logic Controller Block Monitoring System for Memory Attack Defense in Industrial Control Systems
3
作者 Mingyu Lee Jiho Shin Jung Taek Seo 《Computers, Materials & Continua》 SCIE EI 2023年第11期2427-2442,共16页
Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuat... Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuators in the field.However,PLC has memory attack threats such as program injection and manipulation,which has long been a major target for attackers,and it is important to detect these attacks for ICS security.To detect PLC memory attacks,a security system is required to acquire and monitor PLC memory directly.In addition,the performance impact of the security system on the PLC makes it difficult to apply to the ICS.To address these challenges,this paper proposes a system to detect PLC memory attacks by continuously acquiring and monitoring PLC memory.The proposed system detects PLC memory attacks by acquiring the program blocks and block information directly from the same layer as the PLC and then comparing them in bytes with previous data.Experiments with Siemens S7-300 and S7-400 PLC were conducted to evaluate the PLC memory detection performance and performance impact on PLC.The experimental results demonstrate that the proposed system detects all malicious organization block(OB)injection and data block(DB)manipulation,and the increment of PLC cycle time,the impact on PLC performance,was less than 1 ms.The proposed system detects PLC memory attacks with a simpler detection method than earlier studies.Furthermore,the proposed system can be applied to ICS with a small performance impact on PLC. 展开更多
关键词 Programmable logic controller industrial control system attack detection
下载PDF
A Practical Study of Intelligent Image-Based Mobile Robot for Tracking Colored Objects
4
作者 Mofadal Alymani Mohamed Esmail Karar Hazem Ibrahim Shehata 《Computers, Materials & Continua》 SCIE EI 2024年第8期2181-2197,共17页
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r... Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads. 展开更多
关键词 Mobile robot autonomous systems fuzzy logic control real-time image processing
下载PDF
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
5
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 Artificial neural network Fuzzy logic control Weld pool depth Seamtracking
下载PDF
Controlling Torque Distribution for Parallel Hybrid Vehicle Based on Hierarchical Structure Fuzzy Logic 被引量:2
6
作者 Huang Miao-hua, Jin Guo-dongCollege of Mechanic Science and Engineening, Huazhong University of Science and Technology, Wuhan 430074, Hu-bei, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2003年第02A期419-424,共6页
The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc... The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value. 展开更多
关键词 hybrid electric vehicle fuzzy logic control HARDWARE in the loop simulation
下载PDF
Nonsingular Terminal Sliding Mode Control With Ultra-Local Model and Single Input Interval Type-2 Fuzzy Logic Control for Pitch Control of Wind Turbines 被引量:6
7
作者 Saber Abrazeh Ahmad Parvaresh +3 位作者 Saeid-Reza Mohseni Meisam Jahanshahi Zeitouni Meysam Gheisarnejad Mohammad Hassan Khooban 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期690-700,共11页
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.T... As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed. 展开更多
关键词 Interval type-2(IT2)fuzzy logic control modelindependent nonsingular terminal sliding-mode control(MINTSMC) pitch angle control real-time software-in-the-loop(RT-SiL)
下载PDF
Fuzzy logic control strategy for submerged arc automatic welding of digital controlling 被引量:2
8
作者 何宽芳 黄石生 +1 位作者 周漪清 王振民 《China Welding》 EI CAS 2008年第3期55-59,共5页
A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital a... A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital and intellectualized control by means of wire feeding speed feedback. The controller has many functions such as keyboard input, light emitting diode (LED) display and real-time intellectualized control of welding process etc. The controlling performance influenced by the coefficient of correction function was discussed. It was concluded by the experiments the relation between the coefficient of correction function and welding quality, when the coefficient of correction function is great, the dynamic character of controller is better, when the coefficient of correction function is small, the sensitivity character of controller is better. Experimental results also show that digital and fuzzy logic control method enable the improvement of appearance of weld and stability of welding process to be achieved in submerged arc automatic welding. 展开更多
关键词 submerged arc welding microcomputer control correction function fuzzy logic control
下载PDF
A Hybrid Approach to Modeling and Control of Vehicle Height for Electronically Controlled Air Suspension 被引量:8
9
作者 SUN Xiaoqiang CAI Yingfeng +2 位作者 WANG Shaohua LIU Yanling CHEN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期152-162,共11页
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on t... The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties. 展开更多
关键词 electronically controlled air suspension vehicle height control hybrid system mixed logical dynamical model predictive control
下载PDF
Logical and Timing Control for Diagnostic Neutral Beam Injection on HT-7 被引量:1
10
作者 杜少武 葛锁良 +3 位作者 张健 苏禹 刘保华 黄河 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第6期3111-3113,共3页
The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsyste... The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsystems of the DNB system, and provide protection for the DNB system from faults such as beam source arc down. Based on the characteristics of the DNB power supply system, the timing and MCL units have been designed, fabricated and tested. Experiments prove that the timing unit is convenient, flexible and reliable, and the MCL is functional. 展开更多
关键词 diagnostic neutral beam (DNB) timing unit master control logic (MCL)
下载PDF
SPECTRUM HANDOFF IN COGNITIVE RADIO WITH FUZZY LOGIC CONTROL 被引量:2
11
作者 Tang Wanbin Peng Dong 《Journal of Electronics(China)》 2010年第5期708-714,共7页
The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum hando... The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum handoff is needed to maintain the communications of Secondary Users.But the decision making of spectrum handoff is a challenge issue for CR network,because the input of decision making,which obtain through spectrum sensing,is heterogeneous and inexact.In this paper we will use fuzzy logic control theory to solve this issue and make use of new information for handoff operation:the probability of PU's occupancy at a certain channel.Our new algorithm can make more intelligent decision compared to simple traditional spectrum handoff decision making and reduce the probability of spectrum handoff,also the performance of SU's communication can be enhanced. 展开更多
关键词 Cognitive Radio (CR) Spectrum handoff Fuzzy logic control
下载PDF
Adaptive Sliding Mode Control for MIMO Nonlinear Systems Based on Fuzzy Logic Scheme 被引量:2
12
作者 Alan FT Winfield Chris Melhuish 《International Journal of Automation and computing》 EI 2004年第1期51-62,共12页
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un... In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm. 展开更多
关键词 Fuzzy logic control (FLC) sliding mode control (SMC) MULTI input multi output (MIMO) nonlinear uncertain systems adaptive control variable structure system (VSS)
下载PDF
Design of a Fuzzy Logic Based Controller for Fluid Level Application 被引量:1
13
作者 Hina Shahid Sadia Murawwat +4 位作者 Intesar Ahmed Sana Naseer Rukhsar Fiaz Ayesha Afzaal Shumaila Rafiq 《World Journal of Engineering and Technology》 2016年第3期469-476,共9页
In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for prec... In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for precise controlling of fluid level. Due to flaws of PID controller in non-linear type processes such as inertial lag, time delay and time varying etc., there is a need of alternative design methodology that can be applied in both linear and non-linear systems and it can be execute with fuzzy concept. By using fuzzy logic, designer can realize lower development cost, superior feature and better end product. In this paper, level of fluid in tank is control by using fuzzy logic concept. For this purpose, a simulation system of fuzzy logic controller for fluid level control is designed using simulation packages of MATLAB software such as Fuzzy Logic Toolbox and Simulink. The designed fuzzy logic controller first takes information about inflow and outflow of fluid in tank than maintain the level of fluid in tank by controlling its output valve. In this paper, a controller is designed on five rules using two-input and one-output parameters. At the end, simulation results of fuzzy logic based controller are compared with classical PID controller and it shows that fuzzy logic controller has better stability, fast response and small overshoot. 展开更多
关键词 PID Controller Fuzzy logic Controller FIS MATLAB
下载PDF
Maximum Power Point Tracker Controller Using Fuzzy Logic Control with Battery Load for Photovoltaics Systems 被引量:1
14
作者 Mazen Yeselam Baramadeh Mohamed Abd Almonem Abouelela Saad Mubarak Alghuwainem 《Smart Grid and Renewable Energy》 2021年第10期163-181,共19页
<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery l... <span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span> 展开更多
关键词 MPPT Controller Fuzzy logic Control PV System Matlab Simulink
下载PDF
Analyses and Simulation of Fuzzy Logic Control for Suspension System of a Track Vehicle
15
作者 于杨 魏雪霞 张永发 《Journal of Beijing Institute of Technology》 EI CAS 2008年第2期164-167,共4页
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c... The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles. 展开更多
关键词 suspension system track vehicle VIBRATION fuzzy logic control numerical simulation
下载PDF
Fuzzy logic controller implementation on a microbial electrolysis cell for biohydrogen production and storage
16
作者 Gabriel Khew Mun Hong Mohd Azlan Hussain Ahmad Khairi Abdul Wahab 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期149-159,共11页
This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of... This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot. 展开更多
关键词 Fuzzy logic control Process control NONLINEAR Microbial electrolysis cell Renewable energy HYDROGEN
下载PDF
Fuzzy Logic Control for Suspension Systems of Tracked Vehicles
17
作者 于杨 魏雪霞 张永发 《Journal of Beijing Institute of Technology》 EI CAS 2009年第1期37-40,共4页
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis... A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled. 展开更多
关键词 suspension system tracked vehicle vibration control fuzzy logic control numerical simulation
下载PDF
Fuzzy Logic Control for Semi-Active Suspension System of Tracked Vehicle
18
作者 管继富 顾亮 +1 位作者 侯朝桢 王国丽 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期113-117,共5页
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ... The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously. 展开更多
关键词 tracked vehicle semi-active suspension fuzzy logic control
下载PDF
Integrate Fuzzy Logic Stable Control System of Bank-to-Turn Missiles
19
作者 Guo Yuchun Sun Lianju Dai Zongli & Jiang Yong(Beijing Institute of Electronic System Engineering, 100854, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1998年第4期8-16,共9页
The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. ... The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future. 展开更多
关键词 Fuzzy logic control BTT missiles Stable control system
下载PDF
A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems
20
作者 Xing-Peng Li Wen-Lu Fu +2 位作者 Qing-Jun Shi Jian-Bing Xu Quan-Yuan Jiang 《Journal of Electronic Science and Technology》 CAS 2013年第1期72-77,共6页
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste... Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms. 展开更多
关键词 Fuzzy logical control hill climbing search maximum power point tracking permanent magnet synchronous generator wind generation system.
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部