期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pyrite oxidation in column at controlled redox potential of 900 mV with and without bacteria
1
作者 He-Yun Sun Qiao-Yi Tan +3 位作者 Yan Jia Rong-Bo Shu Shui-Ping Zhong Ren-Man Ruan 《Rare Metals》 SCIE EI CAS CSCD 2022年第12期4279-4288,共10页
Comparisons on the bioleaching and sterile oxidation of pyrite were performed at controlled redox potential of 900 mV(vs.SHE) and different temperatures of 30 and 60℃.For sterile experiments,the redox potential of ir... Comparisons on the bioleaching and sterile oxidation of pyrite were performed at controlled redox potential of 900 mV(vs.SHE) and different temperatures of 30 and 60℃.For sterile experiments,the redox potential of irrigation solution was controlled by adding hydrogen peroxide solution(15 wt%),while the redox potential of irrigation solution for bioleaching was elevated by flowing through the packed bed in which bacteria were activated and colonized.The rate of pyrite bioleaching is faster than that of sterile oxidation at temperature of 30℃.The reason is that the potential gradient of leaching solution in bioleaching column is much smaller than that in sterile column.The redox potentials of irrigation solution and leaching solution are similar for bioleaching;however,the redox potential difference of irrigation solution and leaching solution for sterile oxidation is about 150 mV.When temperature increases to 60℃ for sterile oxidation,the rate of pyrite leaching is faster than that of bioleaching at temperature of 30℃,even though the redox potential gradient of leaching solution is great.The mineralogy analyses of pyrite residue were performed by scanning electron microscopy-energy-dispersive spectroscopy(SEM-EDS),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) analyses.The results confirm that pyrite oxidation might only occur at specific sites with high surface energy on surface and obeys the "indirect mechanism" whether there are bacteria or not.The pyrite oxidation rate is not inhibited by inert sulfur on residue surface at elevated redox potential.According to the conclusions,the way to accelerate pyrite oxidation is proposed. 展开更多
关键词 Pyrite column leaching Temperature controlled redox potential BACTERIA
原文传递
Galvanically induced potentials to enable minimal tribochemical wear of stainless steel lubricated with sodium chloride and ionic liquid aqueous solution 被引量:7
2
作者 Tobias AMANN Felix GATTI +2 位作者 Natalie OBERLE Andreas KAILER Jürgen RüHE 《Friction》 SCIE CSCD 2018年第2期230-242,共13页
The effect of galvanically induced potentials on the friction and wear behavior of a 1 RK91 stainless steel regarding to tribocorrosion was investigated using an oscillating ball-on-disk tribometer equipped with an el... The effect of galvanically induced potentials on the friction and wear behavior of a 1 RK91 stainless steel regarding to tribocorrosion was investigated using an oscillating ball-on-disk tribometer equipped with an electrochemical cell. The aim of this investigation is to develop a water-based lubricant. Therefore 1 molar sodium chloride(NaCl) and 1% 1-ethyl-3-methylimidazolium chloride [C_2 mim][Cl] water solutions were used. Tribological performance at two galvanically induced potentials was compared with the non-polarized state: cathodic potential-coupling with pure aluminum- and anodic potential-coupling with pure copper. Frictional and electrochemical response was recorded during the tests. In addition, wear morphology and chemical composition of the steel were analyzed using scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS), respectively. The galvanically induced cathodic polarization of the stainless steel surface results in electrochemical corrosion protection and the formation of a tribolayer. Cations from the electrolyte(sodium Na^+ and 1-ethyl- 3-methylimidazolium [C_2 mim]^+) interact and adhere on the surface. These chemical interactions lead to considerably reduced wear using 1 NaC l(86%) and 1% 1-ethyl-3-methylimidazolium chloride [C_2 mim][Cl](74%) compared to the nonpolarized system. In addition, mechanical and corrosive part of wear was identified using this electrochemical technique. Therefore this method describes a promising method to develop water-based lubricants for technical applications. 展开更多
关键词 sliding wear TRIBOCHEMISTRY potential controlled friction and wear galvanic coupling ionic liquids tribolayer formation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部