期刊文献+
共找到3,432篇文章
< 1 2 172 >
每页显示 20 50 100
Enhancing Safety in Autonomous Vehicle Navigation:An Optimized Path Planning Approach Leveraging Model Predictive Control
1
作者 Shih-Lin Lin Bo-Chen Lin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3555-3572,共18页
This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed ra... This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems. 展开更多
关键词 autonomous driving model predictive control(MPC) lane change maneuver(LCM) adaptive cruise control(ACC)
下载PDF
Robust Platoon Control of Mixed Autonomous and Human-Driven Vehicles for Obstacle Collision Avoidance:A Cooperative Sensing-Based Adaptive Model Predictive Control Approach
2
作者 Daxin Tian Jianshan Zhou +1 位作者 Xu Han Ping Lang 《Engineering》 SCIE EI CAS CSCD 2024年第11期244-266,共23页
Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccu... Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances. 展开更多
关键词 Connected autonomous vehicle Mixed vehicle platoon Obstacle collision avoidance Cooperative sensing Adaptive model predictive control
下载PDF
Autonomous Control Strategy of a Swarm System Under Attack Based on Projected View and Light Transmittance
3
作者 Xuejing Lan Wenbiao Xu +1 位作者 Zhijia Zhao Guiyun Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期648-655,共8页
In the study of a visual projection field with swarm movements,an autonomous control strategy is presented in this paper for a swarm system under attack.To ensure a fast swarm dynamic response and stable spatial cohes... In the study of a visual projection field with swarm movements,an autonomous control strategy is presented in this paper for a swarm system under attack.To ensure a fast swarm dynamic response and stable spatial cohesion in a complex environment,a new hybrid swarm motion model is proposed by introducing global visual projection information to a traditional local interaction mechanism.In the face of attackers,individuals move towards the largest free space according to the projected view of the environment,rather than directly in the opposite direction of the attacker.Moreover,swarm individuals can certainly regroup without dispersion after the attacker leaves.On the other hand,the light transmittance of each individual is defined based on global visual projection information to represent its spatial freedom and relative position in the swarm.Then,an autonomous control strategy with adaptive parameters is proposed according to light transmittance to guide the movement of swarm individuals.The simulation results demonstrate in detail how individuals can avoid attackers safely and reconstruct ordered states of swarm motion. 展开更多
关键词 autonomous control light transmittance projected view swarm system
下载PDF
Factors That Promote Autonomous and Controlled Motivation in Self-management Behavior of Hemodialysis Patients
4
作者 Kayoko Yamamoto Akiko Okumiya 《Journal of Health Science》 2018年第6期393-405,共13页
This study examined the differences and primary factors from the impact of autonomous motivation and controlled motivation on the self-management behavior of hemodialysis patients.Anonymous,self-describing questionnai... This study examined the differences and primary factors from the impact of autonomous motivation and controlled motivation on the self-management behavior of hemodialysis patients.Anonymous,self-describing questionnaires were used for research on nine different dialysis facilities of 413 people who regularly visit.From using the primary factor results of multiple regression analysis,that took autonomous motivation and controlled motivation as the dependent variable,a path diagram was created that led to each motivation.The acknowledgement of autonomy support facilitated whether it was autonomous motivation or controlled motivation(The standardized coefficient was 0.385,0.346,p<0.0001).Positive evaluation coping skills were a primary factor that promoted autonomous motivation,while trait anxiety,disorders of social activities,and lack of motivation were primary factors that promoted controlled motivation.In order to raise the autonomous motivation to promote self-management behavior in patients with hemodialysis treatment,situations that easily cause amotivation and anxiety,as well as tendencies for depression should be assessed.Also the encouragement to attain positive evaluation coping skills to support patient autonomy appears to be effective. 展开更多
关键词 Patients with HEMODIALYSIS treatment autonomous MOTIVATION controlled MOTIVATION SELF-MANAGEMENT behavior.
下载PDF
Autonomous Control Reconfiguration of Aerospace Vehicle Based on Control Effectiveness Estimation 被引量:2
5
作者 池沛 陈宗基 +1 位作者 周锐 魏晨 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期443-451,共9页
Future aerospace vehicles (ASV) are designed to fly in both inner and extra atmospheric fields, which requires autonomous adaptability to the uncertainties emanated from abrupt faults and continuously time-varying e... Future aerospace vehicles (ASV) are designed to fly in both inner and extra atmospheric fields, which requires autonomous adaptability to the uncertainties emanated from abrupt faults and continuously time-varying environments. An autonomous control reconfiguration scheme is presented for ASV to deal with the uncertainties on the base of control effectiveness estimation. The on-line estimation methods for the time-varying control effectiveness of linear control system are investigated. Some sufficient conditions for the estimable system are given for different cases. There are proposed corresponding on-line estimation algorithms which are proved to be convergent and robust to noise using the least-square-based methods. On the ground of fuzzy logic and linear programming, the control allocation algorithms, which are able to implement the autonomous control reconfiguration through the redundant actuators, are put forward. Finally, an integrated system is developed to verify the scheme and algorithms by way of numerical simulation and analysis. 展开更多
关键词 aerospace vehicle autonomous control reconfiguration control effectiveness control allocation linear programming
下载PDF
A Decentralized Autonomous Control on Highly Redundant Robot Manipulators
6
作者 李春梅 杜正春 +1 位作者 颜景平 颜玉玲 《Journal of Southeast University(English Edition)》 EI CAS 2000年第1期41-45,共5页
The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized... The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved. 展开更多
关键词 highly redundant robot manipulators decentralized autonomous control ROBUSTNESS fault tolerance
下载PDF
Evolutionary Decision-Making and Planning for Autonomous Driving Based on Safe and Rational Exploration and Exploitation 被引量:2
7
作者 Kang Yuan Yanjun Huang +4 位作者 Shuo Yang Zewei Zhou Yulei Wang Dongpu Cao Hong Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期108-120,共13页
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame... Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment. 展开更多
关键词 autonomous driving DECISION-MAKING Motion planning Deep reinforcement learning Model predictive control
下载PDF
Distributed Platooning Control of Automated Vehicles Subject to Replay Attacks Based on Proportional Integral Observers 被引量:1
8
作者 Meiling Xie Derui Ding +3 位作者 Xiaohua Ge Qing-Long Han Hongli Dong Yan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1954-1966,共13页
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu... Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Automated vehicles platooning control proportional-integral-observers(PIOs) replay attacks TIME-DELAYS
下载PDF
Trajectory Tracking of Autonomous Vehicle with the Fusion of DYC and Longitudinal–Lateral Control 被引量:19
9
作者 Fen Lin Yaowen Zhang +3 位作者 Youqun Zhao Guodong Yin Huiqi Zhang Kaizheng Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期212-227,共16页
The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the ... The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle. 展开更多
关键词 autonomous vehicle TRAJECTORY tracking Direct yaw MOMENT control(DYC) Model predictive control (MPC) Longitudinal–lateral control
下载PDF
Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking 被引量:23
10
作者 龚建伟 徐威 +3 位作者 姜岩 刘凯 郭红芬 孙银健 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期441-448,共8页
A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering l... A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering linear error model is applied in the MPC controller. Then, a control incre- ment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed control- ler at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/ s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability. 展开更多
关键词 autonomous ground vehicle active steering control model predictive control trajecto-ry tracking
下载PDF
Adaptive control for autonomous rendezvous of spacecraft on elliptical orbit 被引量:4
11
作者 Shan Lu Shijie Xu School of Astronautics, Beihang University,100191 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期539-545,共7页
A strategy for spacecraft autonomous rendezvous on an elliptical orbit in situation of no orbit information is developed. Lawden equation is used to describe relative motion of two spacecraft. Then an adaptive gain fa... A strategy for spacecraft autonomous rendezvous on an elliptical orbit in situation of no orbit information is developed. Lawden equation is used to describe relative motion of two spacecraft. Then an adaptive gain factor is introduced, and an adaptive control law for auton- omous rendezvous on the elliptical orbit is designed using Lyapunov approach. The relative motion is proved to be ultimately bounded under this control law, and the final relative position error can achieve the expected magnitude. Simulation results indicate that the adaptive control law can realize autonomous rendezvous on the elliptical orbit with relative state information only. 展开更多
关键词 autonomous rendezvous Elliptical orbit Lyapunov approach Adaptive control Gain factor
下载PDF
Hand-eye-vision based control for an inspection robot's autonomous line grasping 被引量:14
12
作者 王伟 吴功平 +6 位作者 白玉成 肖华 杨智勇 严宇 何缘 徐显金 苏帆 《Journal of Central South University》 SCIE EI CAS 2014年第6期2216-2227,共12页
In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-ey... In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-eye visual servo.On the basis of the transmission line's geometrical characteristics and the camera's imaging principle,a line recognition and extraction method based on structure constraint is designed.The line's intercept and inclination are defined in an imaging space to represent the robot's change of pose and a law governing the pose decoupling servo control is developed.Under the integrated consideration of the influence of light intensity and background change,noise(from the camera itself and electromagnetic field)as well as the robot's kinetic inertia on the robot's imaging quality in the course of motion and the grasping control precision,a servo controller for grasping the line of the robot's off-line arm is designed with the method of fuzzy control.An experiment is conducted on a 1:1 simulation line using an inspection robot and the robot is put into on-line operation on a real overhead transmission line,where the robot can grasp the line within 18 s in the case of autonomous obstacle-crossing.The robot's autonomous line-grasping function is realized without manual intervention and the robot can grasp the line in a precise,reliable and efficient manner,thus the need of actual operation can be satisfied. 展开更多
关键词 inspection robot line grasping control visual servo overhead transmission line autonomous obstacle-crossing
下载PDF
Parallel Neural Network-Based Motion Controller for Autonomous Underwater Vehicles 被引量:5
13
作者 甘永 王丽荣 +1 位作者 万磊 徐玉如 《China Ocean Engineering》 SCIE EI 2005年第3期485-496,共12页
A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and i... A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles. 展开更多
关键词 neural network autonomous underwater vehicles (AUV) parallel neural network-based controller (PNNC real-time part self-learning part
下载PDF
Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle 被引量:12
14
作者 Chao Yang Feng Yao Ming-Jun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期228-243,共16页
The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic ... The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV. 展开更多
关键词 autonomous underwater vehicle(AUV) Trajectory tracking Neural networks Backstepping method Terminal sliding mode Adaptive control
下载PDF
Adaptive Coordinated Path Tracking Control Strategy for Autonomous Vehicles with Direct Yaw Moment Control 被引量:5
15
作者 Ying Tian Qiangqiang Yao +1 位作者 Peng Hang Shengyuan Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期223-237,共15页
It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control... It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control strategy that coordinates active front wheel steering and direct yaw moment is proposed based on model predictive control algorithm.The recursive least square method with a forgetting factor is used to identify the rear tire cornering stiffness and update the path tracking system prediction model.To adaptively adjust the priorities of path tracking accuracy and vehicle stability,an adaptive strategy based on fuzzy rules is applied to change the weight coefficients in the cost function.An adaptive control strategy for coordinating active front steering and direct yaw moment is proposed to improve the path tracking accuracy under high-speed and large-curvature conditions.To ensure vehicle stability,the sideslip angle,yaw rate and zero moment methods are used to construct optimization constraints based on the model predictive control frame.It is verified through simulation experiments that the proposed adaptive coordinated control strategy can improve the path tracking accuracy and ensure vehicle stability under high-speed and largecurvature conditions. 展开更多
关键词 autonomous vehicles Path tracking Model predictive control Adaptive coordinated
下载PDF
Toward Trustworthy Decision-Making for Autonomous Vehicles:A Robust Reinforcement Learning Approach with Safety Guarantees
16
作者 Xiangkun He Wenhui Huang Chen Lv 《Engineering》 SCIE EI CAS CSCD 2024年第2期77-89,共13页
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present... While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies. 展开更多
关键词 autonomous vehicle DECISION-MAKING Reinforcement learning Adversarial attack Safety guarantee
下载PDF
Nonlinear trajectory tracking control of a new autonomous underwater vehicle in complex sea conditions 被引量:9
17
作者 高富东 潘存云 +1 位作者 韩艳艳 张湘 《Journal of Central South University》 SCIE EI CAS 2012年第7期1859-1868,共10页
Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in c... Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment. 展开更多
关键词 complex sea condition autonomous underwater vehicle (AUV) trajectory tracking sliding mode control
下载PDF
On Zero Dynamics and Controllable Cyber-Attacks in Cyber-Physical Systems and Dynamic Coding Schemes as Their Countermeasures
18
作者 Mahdi Taheri Khashayar Khorasani Nader Meskin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第11期2191-2203,共13页
In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose condition... In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS. The above conditions are derived based on the Markov parameters of the CPS and elements of the system observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked, these conditions provide one with the minimum system knowledge needed to perform zero dynamics and controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing the zero dynamics and controllable attacks even if they have complete knowledge of the coding system. Finally, two illustrative numerical case studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed methodologies. 展开更多
关键词 controllable attacks cyber-physical systems(CPS) dynamic coding zero dynamics attacks stealthy cyber-attacks
下载PDF
MPC-based Motion Planning and Control Enables Smarter and Safer Autonomous Marine Vehicles:Perspectives and a Tutorial Survey 被引量:4
19
作者 Henglai Wei Yang Shi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期8-24,共17页
Autonomous marine vehicles(AMVs)have received considerable attention in the past few decades,mainly because they play essential roles in broad marine applications such as environmental monitoring and resource explorat... Autonomous marine vehicles(AMVs)have received considerable attention in the past few decades,mainly because they play essential roles in broad marine applications such as environmental monitoring and resource exploration.Recent advances in the field of communication technologies,perception capability,computational power and advanced optimization algorithms have stimulated new interest in the development of AMVs.In order to deploy the constrained AMVs in the complex dynamic maritime environment,it is crucial to enhance the guidance and control capabilities through effective and practical planning,and control algorithms.Model predictive control(MPC)has been exceptionally successful in different fields due to its ability to systematically handle constraints while optimizing control performance.This paper aims to provide a review of recent progress in the context of motion planning and control for AMVs from the perceptive of MPC.Finally,future research trends and directions in this substantial research area of AMVs are highlighted. 展开更多
关键词 autonomous marine vehicles(AMVs) model predictive control(MPC) motion control motion planning
下载PDF
Optimization of S-surface controller for autonomous underwater vehicle with immune-genetic algorithm 被引量:4
20
作者 李晔 张磊 +1 位作者 万磊 梁霄 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第3期404-410,共7页
To deduce error and fussy work of manual adjustment of parameters for an S-surface controller in underwater vehicle motion control, the immune-genetic optimization of S-surface controller of an underwater vehicle was ... To deduce error and fussy work of manual adjustment of parameters for an S-surface controller in underwater vehicle motion control, the immune-genetic optimization of S-surface controller of an underwater vehicle was proposed. The ability of producing various antibodies for the immune algorithm, the self-adjustment of antibody density, and the antigen immune memory were used to realize the rapid convergence of S-surface controller parameters. It avoided loitering near the local peak value. Deduction of the S-surface controller was given. General process of the immune-genetic algorithm was described and immune-genetic optimization of S-surface controller parameters was discussed. Definitive results were obtained from many simulation experiments and lake experiments, which indicate that the algorithm can get good effect in optimizing the nonlinear motion controller parameters of an underwater vehicle. 展开更多
关键词 immune-genetic algorithm autonomous underwater vehicle S-surface controller OPTIMIZATION
下载PDF
上一页 1 2 172 下一页 到第
使用帮助 返回顶部