The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repai...The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repairing aircraft, this paper states some basic assumptions of the self-repairing aircraft, and puts forward some special new conceptions concerning the self-repairing aircraft: control input, operating input, command input, repair input and operating and control factor as well as their relationships. Thus it provides a simple and reliable mathematical model structure for the research on the self-repairing control of the aircraft.展开更多
In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical j...In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.展开更多
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation rem...With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.展开更多
The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To a...The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.展开更多
Development of the medium and low voltage DC distribution system is of great significance to a regional transmission of electric energy,increasing a penetration rate of new energy,and enhancing a safety of the operati...Development of the medium and low voltage DC distribution system is of great significance to a regional transmission of electric energy,increasing a penetration rate of new energy,and enhancing a safety of the operation of the AC/DC interconnected grid.This paper first summarizes the medium and low voltage DC distribution system schemes and plans put forward by many countries,and then elaborate status of under-construction medium and low voltage DC distribution system project cases in China.Based on these project cases,this paper analyzes key issues involved in the medium and low voltage DC distribution system topologies,equipment,operation control technologies and DC fault protections,in order to provide theoretical and technical reference for future medium and low voltage DC distribution system-related projects.Finally,this paper combines a current China research status to summarize and give a prediction about the future research direction of medium and low voltage DC distribution system,which can provide reference for the research of medium and low voltage DC distribution system.展开更多
A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable charact...A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable characteristics of machine mounts for the above two purposes can differ significantly due to difference in nature of the excitation and performance criteria in the two situations. In this paper, relevant response quantities are identified that may be used to quantify performance and simplified models of rotating machines are presented using which these relevant response quantities may be calculated. Using random vibration approach with a stationary excitation, it is shown that significant improvement in seismic performance is achievable by proper mount design. Results of shaking table experiments performed with a realistic setup using a centrifugal pump are presented. It is concluded that a solution to this dual isolation problem lies in a semi-active mount capable switching its properties from ‘operation-optimum’ to ‘seismic-optimum’ at the onset of a seismic event.展开更多
Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-di...Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are invalid. In this article, a technology named ranking-based mutation operator(RMO) is presented to enhance the previous differential evolution(DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which i...A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.展开更多
Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical mode...Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.展开更多
This paper describes the control software together with the operational hardware, which successfully realizes the operation of a new fully programmable imaging system with high spatial and temporal resolutions on the ...This paper describes the control software together with the operational hardware, which successfully realizes the operation of a new fully programmable imaging system with high spatial and temporal resolutions on the KT5D magnetic torus, for observing the visible l ight emission from the plasma discharge.展开更多
The controlled volume method of operation is especially suitable for large-scale water delivery canal system with complex operation requirements. An operating simulation model based on the storage volume control metho...The controlled volume method of operation is especially suitable for large-scale water delivery canal system with complex operation requirements. An operating simulation model based on the storage volume control method for multi-reach canal system in series was established. In allusion to the deficiency of existing controlled volume algorithm, the improved controlled volume algorithm of the whole canal pools was proposed, and the simulation results indicated that the storage volume and water level of each canal pool could be accurately controlled after the improved algorithm had been adopted. However, for some typical discharge demand operating conditions, if the previously mentioned algorithm was adopted, then it certainly would cause some unnecessary gate adjustments, and consequently the disturbed canal pools would be increased. Therefore, the idea of controlled volume operation method of continuous canal pools was proposed, and corresponding algorithm was designed. Through simulating practical project, the results indicated that the new controlled volume algorithm proposed for typical operating conditions could comparatively and obviously reduce the number of regulated check gates and disturb canal pools for some typical discharge demand operating conditions, thus the control efficiency of canal system could be improved.展开更多
Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing t...Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.展开更多
The contradiction between the increasing material demand and resource,is the country has faced problems,to better solve the material demand and the contradiction between the environment and resources,is applied to the...The contradiction between the increasing material demand and resource,is the country has faced problems,to better solve the material demand and the contradiction between the environment and resources,is applied to the development of new energy,new energy,not only can alleviate people and resources,environment and resources,the contradiction between people and the environment,also can promote the sustainable development of world economy,HVAC technology has emerged a new generation of energysaving technology,HVAC has the characteristics of low consumption,low pollution,is a development of technology,to be promoted for environmentfriendly,resource-conserving society has an important role in promoting.This paper focuses on the HVAC technology,water source heat pump system operation control and energy consumption optimization,for the relevant personnel reference.展开更多
Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signal...Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.展开更多
In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by un...In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by underdamped step responses due to the special topological configuration and the intricate interplay between the reaction operation and the separation operation involved.The under-dampness can be substantially alleviated through the tight inventory control of bottom reboiler and this presents beneficial effects to process dynamics and operation.Two totally reboiled reactive distillation columns,separating,respectively,a hypothetical synthesis reaction from reactants A and B to product C,and a real decomposition reaction from 1,4-butanediol to tetrahydrofuran and water,are employed to demonstrate these uncommon behaviors.The results obtained give full support to the above qualitative interpretation.Despite the strong influences of reaction kinetics and thermodynamic properties of the reacting mixtures,the totally reboiled reactive distillation columns are generally considered to present such unique behaviors and require tight inventory control of bottom reboiler to facilitate their control system development.展开更多
In this paper, infinite-time p-admissibility of unbounded operators is introduced and the C0-semigroup characterization of the infinite-time p-admissibility of unbounded observation operators is given. Moreover, the a...In this paper, infinite-time p-admissibility of unbounded operators is introduced and the C0-semigroup characterization of the infinite-time p-admissibility of unbounded observation operators is given. Moreover, the analogous result for the infinite-time p-admissibility of unbounded control operators is presented.展开更多
Energy performance contracting(EPC)has emerged as a useful project financ-ing and delivery tool for building retrofits,particularly among building owner-ships which have experienced reduced funding for capital project...Energy performance contracting(EPC)has emerged as a useful project financ-ing and delivery tool for building retrofits,particularly among building owner-ships which have experienced reduced funding for capital projects.Through EPC,a contractor(called the EPC contractor or the energy service company)guaran-tees minimum energy savings performance and enables the building owner to finance the project using utility savings over the length of the project(which is typically 12-15 years,or longer).Despite its growing use,there is a dearth of lit-erature regarding a contractor’s risks related to the delivery and execution of EPC building retrofits.This is particularly important as the performance guarantee effec-tively transfers project performance risk from the owner to the EPC contractor.This research proposes a project factors-based risk framework for EPC building retrofits,initially developed through a comprehensive review of relevant literature and project documents and refined through the elicited expertise of 19 highly expe-rienced EPC contracting professionals.A Delphi technique-based expertise elici-tation strategy was used to confirm the findings of the a priori(literature-based)framework and provide additional analysis related to risk causes and control mea-sures as well as relative risk importance.This information was used to construct a refined risk framework which provides insight into the lengthy project performance period during the earliest phases of the project’s life cycle.This has the advantage of providing rapid screening of the project factors that can potentially lead to the greatest project performance risks.展开更多
The desulfuration system in the second phase project of Sanhe Power Plant is the first such system that adopts in-duct FGD with no-bypass design by domestic power plants.Different from that of the conventional FGD wit...The desulfuration system in the second phase project of Sanhe Power Plant is the first such system that adopts in-duct FGD with no-bypass design by domestic power plants.Different from that of the conventional FGD with bypass design,a running control mode,which is important for the security of the absorbing tower within the designed ranges,shall be made to ensure the flue gas temperature and dust concentration at the inlet of the absorbing tower.The stable running of the system shows that the control mode is feasible.展开更多
Machine learning control(MLC)is a highly flexible and adaptable method that enables the design,modeling,tuning,and maintenance of building controllers to be more accurate,automated,flexible,and adaptable.The research ...Machine learning control(MLC)is a highly flexible and adaptable method that enables the design,modeling,tuning,and maintenance of building controllers to be more accurate,automated,flexible,and adaptable.The research topic of MLC in building energy systems is developing rapidly,but to our knowledge,no review has been published that specifically and systematically focuses on MLC for building energy systems.This paper provides a systematic review of MLC in building energy systems.We review technical papers in two major categories of applications of machine learning in building control:(1)building system and component modeling for control,and(2)control process learning.We identify MLC topics that have been well-studied and those that need further research in the field of building operation control.We also identify the gaps between the present and future application of MLC and predict future trends and opportunities.展开更多
文摘The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repairing aircraft, this paper states some basic assumptions of the self-repairing aircraft, and puts forward some special new conceptions concerning the self-repairing aircraft: control input, operating input, command input, repair input and operating and control factor as well as their relationships. Thus it provides a simple and reliable mathematical model structure for the research on the self-repairing control of the aircraft.
基金Supported by the Basic Scientific Research Projects of the Central University of China(ZXH2010D010)the National Natural Science Foundation of China(60979021/F01)~~
文摘In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.
基金supported by China Natural Scientific and Technological Support Projects(Wenchuan Fault Scientific Drilling)National Natural Scientific Foundation of China(Grant No.41204047)
文摘With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.
基金This work was funded by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07201003)the National Natural Science Foundation of China(51961125101)the Science and Technology Project of Zhejiang Province(2018C03003).
文摘The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.
基金supported by the National Key Rese arch and Development Program of China(2018YFB0904100)Science and Technology Project of State Grid(SGHB0000KXJS1800685)
文摘Development of the medium and low voltage DC distribution system is of great significance to a regional transmission of electric energy,increasing a penetration rate of new energy,and enhancing a safety of the operation of the AC/DC interconnected grid.This paper first summarizes the medium and low voltage DC distribution system schemes and plans put forward by many countries,and then elaborate status of under-construction medium and low voltage DC distribution system project cases in China.Based on these project cases,this paper analyzes key issues involved in the medium and low voltage DC distribution system topologies,equipment,operation control technologies and DC fault protections,in order to provide theoretical and technical reference for future medium and low voltage DC distribution system-related projects.Finally,this paper combines a current China research status to summarize and give a prediction about the future research direction of medium and low voltage DC distribution system,which can provide reference for the research of medium and low voltage DC distribution system.
基金the Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY
文摘A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable characteristics of machine mounts for the above two purposes can differ significantly due to difference in nature of the excitation and performance criteria in the two situations. In this paper, relevant response quantities are identified that may be used to quantify performance and simplified models of rotating machines are presented using which these relevant response quantities may be calculated. Using random vibration approach with a stationary excitation, it is shown that significant improvement in seismic performance is achievable by proper mount design. Results of shaking table experiments performed with a realistic setup using a centrifugal pump are presented. It is concluded that a solution to this dual isolation problem lies in a semi-active mount capable switching its properties from ‘operation-optimum’ to ‘seismic-optimum’ at the onset of a seismic event.
基金Supported by the National Natural Science Foundation of China(61333010,61134007and 21276078)“Shu Guang”project of Shanghai Municipal Education Commission,the Research Talents Startup Foundation of Jiangsu University(15JDG139)China Postdoctoral Science Foundation(2016M591783)
文摘Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are invalid. In this article, a technology named ranking-based mutation operator(RMO) is presented to enhance the previous differential evolution(DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
基金Supported by the National Natural Science Foundation of China(No.50875054)Weihai Science and Technology Development Plan Project(No.2012DXGJ13)
文摘A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.
文摘Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.
基金The project supported by Chinese National Science Foundation (Nos. 10335060, 10235010) and Creative Project Grants of ChineseAcademy of Science
文摘This paper describes the control software together with the operational hardware, which successfully realizes the operation of a new fully programmable imaging system with high spatial and temporal resolutions on the KT5D magnetic torus, for observing the visible l ight emission from the plasma discharge.
基金Supported by the Governmental Public Industry Research Special Funds for Projects of MWR (200901002,200901003,200901006)Key Projects in the National Science & Technology Pillar Program During the 11th Five-year Plan Period of China (2006BAB04A12)
文摘The controlled volume method of operation is especially suitable for large-scale water delivery canal system with complex operation requirements. An operating simulation model based on the storage volume control method for multi-reach canal system in series was established. In allusion to the deficiency of existing controlled volume algorithm, the improved controlled volume algorithm of the whole canal pools was proposed, and the simulation results indicated that the storage volume and water level of each canal pool could be accurately controlled after the improved algorithm had been adopted. However, for some typical discharge demand operating conditions, if the previously mentioned algorithm was adopted, then it certainly would cause some unnecessary gate adjustments, and consequently the disturbed canal pools would be increased. Therefore, the idea of controlled volume operation method of continuous canal pools was proposed, and corresponding algorithm was designed. Through simulating practical project, the results indicated that the new controlled volume algorithm proposed for typical operating conditions could comparatively and obviously reduce the number of regulated check gates and disturb canal pools for some typical discharge demand operating conditions, thus the control efficiency of canal system could be improved.
基金supported by the 2021 Chinese Academy of Engineering(CAE)International Top-level Forum on Engineering Science and Technology,“Safety and Governance of the High-Speed Railway”。
文摘Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.
文摘The contradiction between the increasing material demand and resource,is the country has faced problems,to better solve the material demand and the contradiction between the environment and resources,is applied to the development of new energy,new energy,not only can alleviate people and resources,environment and resources,the contradiction between people and the environment,also can promote the sustainable development of world economy,HVAC technology has emerged a new generation of energysaving technology,HVAC has the characteristics of low consumption,low pollution,is a development of technology,to be promoted for environmentfriendly,resource-conserving society has an important role in promoting.This paper focuses on the HVAC technology,water source heat pump system operation control and energy consumption optimization,for the relevant personnel reference.
基金This research was jointly supported by the National Natural Science Foundation of China[Grant 62203468]the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)[Grant 2022QNRC001]+1 种基金the Technological Research and Development Program of China Railway Corporation Limited[Grant K2021X001]by the Foundation of China Academy of Railway Sciences Corporation Limited[Grant 2021YJ043].On behalf all authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.
基金Supported by The National Natural Science Foundation of China(21076015,21376018,and 21576014)The Fundamental Research Funds for the Central Universities(ZY1503)
文摘In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by underdamped step responses due to the special topological configuration and the intricate interplay between the reaction operation and the separation operation involved.The under-dampness can be substantially alleviated through the tight inventory control of bottom reboiler and this presents beneficial effects to process dynamics and operation.Two totally reboiled reactive distillation columns,separating,respectively,a hypothetical synthesis reaction from reactants A and B to product C,and a real decomposition reaction from 1,4-butanediol to tetrahydrofuran and water,are employed to demonstrate these uncommon behaviors.The results obtained give full support to the above qualitative interpretation.Despite the strong influences of reaction kinetics and thermodynamic properties of the reacting mixtures,the totally reboiled reactive distillation columns are generally considered to present such unique behaviors and require tight inventory control of bottom reboiler to facilitate their control system development.
文摘In this paper, infinite-time p-admissibility of unbounded operators is introduced and the C0-semigroup characterization of the infinite-time p-admissibility of unbounded observation operators is given. Moreover, the analogous result for the infinite-time p-admissibility of unbounded control operators is presented.
文摘Energy performance contracting(EPC)has emerged as a useful project financ-ing and delivery tool for building retrofits,particularly among building owner-ships which have experienced reduced funding for capital projects.Through EPC,a contractor(called the EPC contractor or the energy service company)guaran-tees minimum energy savings performance and enables the building owner to finance the project using utility savings over the length of the project(which is typically 12-15 years,or longer).Despite its growing use,there is a dearth of lit-erature regarding a contractor’s risks related to the delivery and execution of EPC building retrofits.This is particularly important as the performance guarantee effec-tively transfers project performance risk from the owner to the EPC contractor.This research proposes a project factors-based risk framework for EPC building retrofits,initially developed through a comprehensive review of relevant literature and project documents and refined through the elicited expertise of 19 highly expe-rienced EPC contracting professionals.A Delphi technique-based expertise elici-tation strategy was used to confirm the findings of the a priori(literature-based)framework and provide additional analysis related to risk causes and control mea-sures as well as relative risk importance.This information was used to construct a refined risk framework which provides insight into the lengthy project performance period during the earliest phases of the project’s life cycle.This has the advantage of providing rapid screening of the project factors that can potentially lead to the greatest project performance risks.
文摘The desulfuration system in the second phase project of Sanhe Power Plant is the first such system that adopts in-duct FGD with no-bypass design by domestic power plants.Different from that of the conventional FGD with bypass design,a running control mode,which is important for the security of the absorbing tower within the designed ranges,shall be made to ensure the flue gas temperature and dust concentration at the inlet of the absorbing tower.The stable running of the system shows that the control mode is feasible.
文摘Machine learning control(MLC)is a highly flexible and adaptable method that enables the design,modeling,tuning,and maintenance of building controllers to be more accurate,automated,flexible,and adaptable.The research topic of MLC in building energy systems is developing rapidly,but to our knowledge,no review has been published that specifically and systematically focuses on MLC for building energy systems.This paper provides a systematic review of MLC in building energy systems.We review technical papers in two major categories of applications of machine learning in building control:(1)building system and component modeling for control,and(2)control process learning.We identify MLC topics that have been well-studied and those that need further research in the field of building operation control.We also identify the gaps between the present and future application of MLC and predict future trends and opportunities.