Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
Nowadays,researchers are becoming increasingly concerned about developing a highly efficient emission free transportation and energy generation system for addressing the pressing issue of environmental crisis in the fo...Nowadays,researchers are becoming increasingly concerned about developing a highly efficient emission free transportation and energy generation system for addressing the pressing issue of environmental crisis in the form of pollution and climate change.The introduction of Electric Vehicles(EVs)solves the challenge of emission-free transportation while the necessity for decarbonized energy production is fulfilled by the installation and expansion of solar-powered Photovoltaic(PV)systems.Hence,this paper focuses on designing an effective PV based EV charging system that aids in stepping towards the achievement of a pollution free future.For overcoming the inherent intermittency associated with PV,a novel DC-DC converter is designed by integrating both Trans Z-source con-verter and Luo converter,which offers remarkable benefits of high conversion range,lesser voltage stress and excellent efficiency.A novel robust Lion Grey Wolf Optimized Proportional Integral(LGWO-PI)controller is designed for sig-nificantly strengthening the operation of the integrated converter in terms of peak overshoot,Total Harmonic Distortion(THD)and settling time.A 3’Voltage Source Inverter(VSI)is employed to convert the stable DC output from the PV sys-tem to AC,which is then used for driving the Brushless Direct Current Motor(BLDC)motor of EV.The speed of the BLDC is regulated using a PI controller.The BLDC motor gets the power supply from the grid during the unavailability of PV based power supply.The grid is integrated with the designed EV charging system through a 1’VSI and the process of grid voltage synchronization is carried out with the application of PI controller.The simulation for evaluating the operation of the presented EV charging system is done using MATLAB and the attained out-comes have validated that this introduced methodology delivers enhanced perfor-mance with optimal efficiency of 97.6%and lesser THD of 2.1%.展开更多
This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking s...This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.展开更多
PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the pre...PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller.The Direct Multi Search(DMS)algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model.A Metaheuristics Algorithm such as,SA(Simulated Annealing),MBBO(Modified Biogeography Based Opti-mization),BBO(Biogeography Based Optimization),PBIL(Population Based Incremental Learning),ES(Evolution Strategy),StudGA(Stud Genetic Algo-rithms),PSO(Particle Swarm Optimization),StudGA(Stud Genetic Algorithms),ES(Evolution Strategy),PSO(Particle Swarm Optimization)and ACO(Ant Col-ony Optimization)are used to tune the PID controller and Smith predictor design.The effectiveness of the suggested algorithms DMS-SA,DMS-BBO,DMS-MBBO,DMS-PBIL,DMS-StudGA,DMS-ES,DMS-ACO,and DMS-PSO for a class of dead-time structures employing PID controller and Smith predictor design controllers is illustrated using unit step set point response.When compared to other optimizations,the suggested hybrid metaheuristics approach improves the time response analysis when extended to the problem of smith predictor and PID controller designed tuning.展开更多
With the development of automatic driving and fuzzy theory, people pay more and more attention to the application of fuzzy logic in engineering technology. The automatic parking module in the automatic driving system ...With the development of automatic driving and fuzzy theory, people pay more and more attention to the application of fuzzy logic in engineering technology. The automatic parking module in the automatic driving system has always been the focus of research. Automatic parking modules can greatly assist drivers in parking operations, greatly reduce parking difficulties and make people more convenient and fast parking. In this paper, an automatic parking system based on the fuzzy controller is proposed. The fuzzy controller of automatic parking system is constructed by using fuzzy theory, and the robustness of the whole system is examined by fuzzy logic. Firstly, the vehicle motion rules and trajectory changes are analyzed in detail, and the real parking lot model is simulated. Then, the input and output variables of the whole system are analyzed by fuzzy theory and the membership function is constructed. Based on the experience of human experts, the parking rules are tested and summarized, and a reasonable and practical rule base is established. Finally, MATLAB is used to code, build the visual interface of parking lot and vehicles, and draw the cyclic iterative function to detect the vehicle position and direction angle, so as to act as a sensor. The results show that using a fuzzy controller to construct an automatic parking system can effectively improve the parking level.展开更多
The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled...The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled systems, the PWM and the calculating delays modify the system characteristics in terms of frequency and phase, thus destabilizing the system and degrading the VR-AD performances, mainly in low switching frequencies. Moreover, the stability of the system is greatly affected under weak grid operation characterized by large grid impedance variation. This paper solves these problems by proposing a systematic, robust and optimized design procedure of voltage oriented PI control(VOC) with VRAD. The considered design procedure ensures robust control(sufficient stability margins) and high quality of grid current(reduced steady-state error and minimized THD value) despite the negative impact of digital time delay, grid impedance variation and filter parameters change. Simulation and experimental results are presented to show robustness and efficiency of the suggested design procedure.展开更多
The Legendre orthogonal functions are employed to design the family of PID controllers for a variety of plants. In the proposed method, the PID controller and the plant model are represented with their corresponding L...The Legendre orthogonal functions are employed to design the family of PID controllers for a variety of plants. In the proposed method, the PID controller and the plant model are represented with their corresponding Legendre series. Matching the first three terms of the Legendre series of the loop gain with the desired one gives the PID controller parameters. The closed loop system stability conditions in terms of the Legendre basis function pole(λ) for a wide range of systems including the first order, second order, double integrator, first order plus dead time, and first order unstable plants are obtained. For first order and double integrator plants, the closed loop system stability is preserved for all values of λ and for the other plants, an appropriate range in terms of λ is obtained. The optimum value of λ to attain a minimum integral square error performance index in the presence of the control signal constraints is achieved. The numerical simulations demonstrate the benefits of the Legendre based PID controller.展开更多
In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral deriv...In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral derivative(FOPID)controller for high order system are presented respectively.Both IOPID controller and FOPID controller designed by the two tuning methods can satisfy all the three specifications proposed,which can guarantee the desired control performance and the robustness of the high order system to the loop gain variations.From the simulation results,the three controllers meet the dynamic performance requirements of high order system.Moreover,the FOPID controller,with the shortest overshoot and adjustment time,outperforms the IOPID controller and the FPID controller for the high order system.展开更多
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques ...The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques such as digital signal processing(DSP)systems are implemented to control motors.These systems are efficient but very expensive for certain applications.From this arises the need for a controller capable of handling AC and DC motors that improves efficiency and maintains low energy consumption.This project presents the design of an adaptive control system for brushless AC induction and DC motors,which is functional to any type of plant in the industry.The design was possible by implementing Matlab software and tools such as digital signal processor(DSP)and Simulink.Through an extensive investigation of the state of the art,three models needed to represent the control system have been specified.The first model for the AC motor,the second for the DC motor and the third for the DSP control;this is done in this way so that the probability of failure is lower.Subsequently,these models have been programmed in Simulink,integrating the three main models into one.In this way,the design of a controller for use in AC induction motors,specifically squirrel cage and brushless DC motors,has been achieved.The final model represents a response time of 0.25 seconds,which is optimal for this type of application,where response times of 2e-3 to 3 seconds are expected.展开更多
A single machine-infinite-bus(SMIB) system including the interline power flow controllers(IPFCs) and the power system stabilizer(PSS) controller is addressed. The linearized system model is considered for investigatin...A single machine-infinite-bus(SMIB) system including the interline power flow controllers(IPFCs) and the power system stabilizer(PSS) controller is addressed. The linearized system model is considered for investigating the interactions among IPFC and PSS controllers. To improve the stability of whole system again different disturbances, a lead-lag controller is considered to produce supplementary signal. The proposed supplementary controller is implemented to improve the damping of the power system low frequency oscillations(LFOs). Imperialist optimization algorithm(ICA) and shuffled frog leaping algorithm(SFLA) are implemented to search for optimal supplementary controllers and PSS parameters. Moreover, singular value decomposition(SVD) method is utilized to select the most effective damping control signal of IPFC lead-lag controllers. To evaluate the system performance, different operating conditions are considered. Reponses of system in five modes including uncoordinated and coordinated modes of IPFC and PSS using ICA and SFLA are studied and compared. Considering the results, response of system without controller shows the highest overshoot and the longest settling time for rotor angel at the different operating conditions. In this mode of system, rotor speed has the highest overshoot. Rotor angel in the system with only PSS includes lower overshoot and oscillation than system without controller. When PSS is only implemented, rotor speed deviation has the longest settling time. Rotor speed deviation in the uncoordinated mode of IPFC and PSS shows lower overshoot than system with only PSS and without controller. It is noticeable that in this mode, rotor angel has higher overshoot than system with only PSS. The superiority of the suggested ICA-based coordinated controllers is obvious compared with SFLA-based coordinated controllers and other system modes. Responses of coordinated PSS and IPFC SFLA-based supplementary controllers include higher peak amplitude and longer settling time compared with coordinated IPFC and PSS ICA-based controllers. This comparison shows that overshoots, undershoots and the settling times are reduced considerably in coordinated mode of IPFC based controller and PSS using ICA. Analysis of the system performance shows that the proposed method has excellent response to different faults in power system.展开更多
A method of designing robust controller based on genetic algorithm is presented in order to overcome the drawback of manual modification and trial in designing the control system of missile. Specification functions wh...A method of designing robust controller based on genetic algorithm is presented in order to overcome the drawback of manual modification and trial in designing the control system of missile. Specification functions which reflect the dynamic performance in time domain and robustness in frequency domain are presented, then dynamic/static performance, control cost and robust stability are incorporated into a multi-objective optimization problem. Genetic algorithm is used to solve the problem and achieve the optimal controller directly. Simulation results show that the controller provides a good stability and offers a good dynamic performance in a large flight envelope. The results also validate the effectiveness of the method.展开更多
Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing in...Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).展开更多
The repetitive processing and large quantity of single product represented by 3C products are urgently needed.However,for current processing operations,previous processing data have not been used in the optimization o...The repetitive processing and large quantity of single product represented by 3C products are urgently needed.However,for current processing operations,previous processing data have not been used in the optimization of control input.In order to utilize previous processing data to facilitate the next process and avoid adverse effects caused by repetitive disturbance and noise,the idea of iterative learning was introduced to improve the accuracy of machining.On the control level,since it is difficult to obtain high accuracy by traditional feedback control when faced with complex trajectories,an open⁃loop iterative learning controller and a position loop feedback controller were introduced,which worked fast with good convergence effects.Aiming at reducing the influence of accidental error,step type iterative learning was put forward.The iteration mechanism was stopped when the accuracy converged to the allowable range so as to reduce computational complexity,store the current iterative part of the control input,and make constant value compensation.However,in simulation and experiment,it was found that after superposition of the iterative learning controller,the phenomenon of partial divergence of the system tracking error occurred.Therefore,the speed and acceleration characteristics of input trajectories in time domain and frequency domain were analyzed.High⁃frequency noise was introduced in frequency domain,which was found to be the cause of the abovementioned phenomenon,and high⁃frequency components were filtered to solve the problem.To further improve the accuracy of convergence and avoid filtering effective high⁃frequency information in some area,a switchable filter based on the analysis of the frequency characteristics of input trajectory was proposed.Through SIMULINK simulation and dSPACE experimental verification,it was proved that the iterative learning controller of modifying controlled quantity and filter based iterative learning control method are effective.展开更多
An efficient critical control system design is proposed in this paper. The key idea is to decompose the design problem into two simpler design steps by the technique used in the classical loop transfer recovery method...An efficient critical control system design is proposed in this paper. The key idea is to decompose the design problem into two simpler design steps by the technique used in the classical loop transfer recovery method (LTR). The disturbance cancellation integral controller is used as a basic controller. Since the standard loop transfer recovery method cannot be applied to the disturbance cancellation controller, the nonstandard version recently found is used for the decomposition. Exogenous inputs with constraints both on the amplitude and rate of change are considered. The majorant approach is taken to obtain the analytical sufficient matching conditions. A numerical design example is presented to illustrate the effiectiveness of the proposed design.展开更多
The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is ...The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is presented. The proposed approach is well suited to the design of controllers which must meet a set of conflicting performance specifications. Gain tuning is central to the design process, however, the tuning process is greatly simplified over that presented by the problem of tuning a PID controller for example. The proposed control method is applied to an AC induction motor, with an inner-loop flux vector controller applied to design a position control system. Experimental results verify the effectiveness of this method.展开更多
In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertaintie...In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.展开更多
This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is consid...This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.展开更多
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
文摘Nowadays,researchers are becoming increasingly concerned about developing a highly efficient emission free transportation and energy generation system for addressing the pressing issue of environmental crisis in the form of pollution and climate change.The introduction of Electric Vehicles(EVs)solves the challenge of emission-free transportation while the necessity for decarbonized energy production is fulfilled by the installation and expansion of solar-powered Photovoltaic(PV)systems.Hence,this paper focuses on designing an effective PV based EV charging system that aids in stepping towards the achievement of a pollution free future.For overcoming the inherent intermittency associated with PV,a novel DC-DC converter is designed by integrating both Trans Z-source con-verter and Luo converter,which offers remarkable benefits of high conversion range,lesser voltage stress and excellent efficiency.A novel robust Lion Grey Wolf Optimized Proportional Integral(LGWO-PI)controller is designed for sig-nificantly strengthening the operation of the integrated converter in terms of peak overshoot,Total Harmonic Distortion(THD)and settling time.A 3’Voltage Source Inverter(VSI)is employed to convert the stable DC output from the PV sys-tem to AC,which is then used for driving the Brushless Direct Current Motor(BLDC)motor of EV.The speed of the BLDC is regulated using a PI controller.The BLDC motor gets the power supply from the grid during the unavailability of PV based power supply.The grid is integrated with the designed EV charging system through a 1’VSI and the process of grid voltage synchronization is carried out with the application of PI controller.The simulation for evaluating the operation of the presented EV charging system is done using MATLAB and the attained out-comes have validated that this introduced methodology delivers enhanced perfor-mance with optimal efficiency of 97.6%and lesser THD of 2.1%.
基金supported by the National Natural Science Foundation of China(62173029,62273033,U20A20225)the Fundamental Research Funds for the Central Universities,China(FRF-BD-19-002A)。
文摘This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.
文摘PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller.The Direct Multi Search(DMS)algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model.A Metaheuristics Algorithm such as,SA(Simulated Annealing),MBBO(Modified Biogeography Based Opti-mization),BBO(Biogeography Based Optimization),PBIL(Population Based Incremental Learning),ES(Evolution Strategy),StudGA(Stud Genetic Algo-rithms),PSO(Particle Swarm Optimization),StudGA(Stud Genetic Algorithms),ES(Evolution Strategy),PSO(Particle Swarm Optimization)and ACO(Ant Col-ony Optimization)are used to tune the PID controller and Smith predictor design.The effectiveness of the suggested algorithms DMS-SA,DMS-BBO,DMS-MBBO,DMS-PBIL,DMS-StudGA,DMS-ES,DMS-ACO,and DMS-PSO for a class of dead-time structures employing PID controller and Smith predictor design controllers is illustrated using unit step set point response.When compared to other optimizations,the suggested hybrid metaheuristics approach improves the time response analysis when extended to the problem of smith predictor and PID controller designed tuning.
文摘With the development of automatic driving and fuzzy theory, people pay more and more attention to the application of fuzzy logic in engineering technology. The automatic parking module in the automatic driving system has always been the focus of research. Automatic parking modules can greatly assist drivers in parking operations, greatly reduce parking difficulties and make people more convenient and fast parking. In this paper, an automatic parking system based on the fuzzy controller is proposed. The fuzzy controller of automatic parking system is constructed by using fuzzy theory, and the robustness of the whole system is examined by fuzzy logic. Firstly, the vehicle motion rules and trajectory changes are analyzed in detail, and the real parking lot model is simulated. Then, the input and output variables of the whole system are analyzed by fuzzy theory and the membership function is constructed. Based on the experience of human experts, the parking rules are tested and summarized, and a reasonable and practical rule base is established. Finally, MATLAB is used to code, build the visual interface of parking lot and vehicles, and draw the cyclic iterative function to detect the vehicle position and direction angle, so as to act as a sensor. The results show that using a fuzzy controller to construct an automatic parking system can effectively improve the parking level.
基金supported by the Tunisian Ministry of High Education and Research under Grant LSE-ENIT-LR11ES15
文摘The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled systems, the PWM and the calculating delays modify the system characteristics in terms of frequency and phase, thus destabilizing the system and degrading the VR-AD performances, mainly in low switching frequencies. Moreover, the stability of the system is greatly affected under weak grid operation characterized by large grid impedance variation. This paper solves these problems by proposing a systematic, robust and optimized design procedure of voltage oriented PI control(VOC) with VRAD. The considered design procedure ensures robust control(sufficient stability margins) and high quality of grid current(reduced steady-state error and minimized THD value) despite the negative impact of digital time delay, grid impedance variation and filter parameters change. Simulation and experimental results are presented to show robustness and efficiency of the suggested design procedure.
文摘The Legendre orthogonal functions are employed to design the family of PID controllers for a variety of plants. In the proposed method, the PID controller and the plant model are represented with their corresponding Legendre series. Matching the first three terms of the Legendre series of the loop gain with the desired one gives the PID controller parameters. The closed loop system stability conditions in terms of the Legendre basis function pole(λ) for a wide range of systems including the first order, second order, double integrator, first order plus dead time, and first order unstable plants are obtained. For first order and double integrator plants, the closed loop system stability is preserved for all values of λ and for the other plants, an appropriate range in terms of λ is obtained. The optimum value of λ to attain a minimum integral square error performance index in the presence of the control signal constraints is achieved. The numerical simulations demonstrate the benefits of the Legendre based PID controller.
基金Sponsored by the Foundation of Jilin Educational Committee(Grant No.22201-2221010195)
文摘In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral derivative(FOPID)controller for high order system are presented respectively.Both IOPID controller and FOPID controller designed by the two tuning methods can satisfy all the three specifications proposed,which can guarantee the desired control performance and the robustness of the high order system to the loop gain variations.From the simulation results,the three controllers meet the dynamic performance requirements of high order system.Moreover,the FOPID controller,with the shortest overshoot and adjustment time,outperforms the IOPID controller and the FPID controller for the high order system.
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
文摘The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques such as digital signal processing(DSP)systems are implemented to control motors.These systems are efficient but very expensive for certain applications.From this arises the need for a controller capable of handling AC and DC motors that improves efficiency and maintains low energy consumption.This project presents the design of an adaptive control system for brushless AC induction and DC motors,which is functional to any type of plant in the industry.The design was possible by implementing Matlab software and tools such as digital signal processor(DSP)and Simulink.Through an extensive investigation of the state of the art,three models needed to represent the control system have been specified.The first model for the AC motor,the second for the DC motor and the third for the DSP control;this is done in this way so that the probability of failure is lower.Subsequently,these models have been programmed in Simulink,integrating the three main models into one.In this way,the design of a controller for use in AC induction motors,specifically squirrel cage and brushless DC motors,has been achieved.The final model represents a response time of 0.25 seconds,which is optimal for this type of application,where response times of 2e-3 to 3 seconds are expected.
文摘A single machine-infinite-bus(SMIB) system including the interline power flow controllers(IPFCs) and the power system stabilizer(PSS) controller is addressed. The linearized system model is considered for investigating the interactions among IPFC and PSS controllers. To improve the stability of whole system again different disturbances, a lead-lag controller is considered to produce supplementary signal. The proposed supplementary controller is implemented to improve the damping of the power system low frequency oscillations(LFOs). Imperialist optimization algorithm(ICA) and shuffled frog leaping algorithm(SFLA) are implemented to search for optimal supplementary controllers and PSS parameters. Moreover, singular value decomposition(SVD) method is utilized to select the most effective damping control signal of IPFC lead-lag controllers. To evaluate the system performance, different operating conditions are considered. Reponses of system in five modes including uncoordinated and coordinated modes of IPFC and PSS using ICA and SFLA are studied and compared. Considering the results, response of system without controller shows the highest overshoot and the longest settling time for rotor angel at the different operating conditions. In this mode of system, rotor speed has the highest overshoot. Rotor angel in the system with only PSS includes lower overshoot and oscillation than system without controller. When PSS is only implemented, rotor speed deviation has the longest settling time. Rotor speed deviation in the uncoordinated mode of IPFC and PSS shows lower overshoot than system with only PSS and without controller. It is noticeable that in this mode, rotor angel has higher overshoot than system with only PSS. The superiority of the suggested ICA-based coordinated controllers is obvious compared with SFLA-based coordinated controllers and other system modes. Responses of coordinated PSS and IPFC SFLA-based supplementary controllers include higher peak amplitude and longer settling time compared with coordinated IPFC and PSS ICA-based controllers. This comparison shows that overshoots, undershoots and the settling times are reduced considerably in coordinated mode of IPFC based controller and PSS using ICA. Analysis of the system performance shows that the proposed method has excellent response to different faults in power system.
基金Sponsored bythe Ministerial Level Advanced Research Foundation(320010401)
文摘A method of designing robust controller based on genetic algorithm is presented in order to overcome the drawback of manual modification and trial in designing the control system of missile. Specification functions which reflect the dynamic performance in time domain and robustness in frequency domain are presented, then dynamic/static performance, control cost and robust stability are incorporated into a multi-objective optimization problem. Genetic algorithm is used to solve the problem and achieve the optimal controller directly. Simulation results show that the controller provides a good stability and offers a good dynamic performance in a large flight envelope. The results also validate the effectiveness of the method.
基金the European Union through the Network of Excellence Hybrid Control (HYCON) under contract IST-511368.
文摘Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).
基金Sponsored by the Shenzhen Basic Research Program(No.JCYJ20150731105106111)the Shenzhen Key Lab for Advanced Motion Control and Modern Automation Equipment.
文摘The repetitive processing and large quantity of single product represented by 3C products are urgently needed.However,for current processing operations,previous processing data have not been used in the optimization of control input.In order to utilize previous processing data to facilitate the next process and avoid adverse effects caused by repetitive disturbance and noise,the idea of iterative learning was introduced to improve the accuracy of machining.On the control level,since it is difficult to obtain high accuracy by traditional feedback control when faced with complex trajectories,an open⁃loop iterative learning controller and a position loop feedback controller were introduced,which worked fast with good convergence effects.Aiming at reducing the influence of accidental error,step type iterative learning was put forward.The iteration mechanism was stopped when the accuracy converged to the allowable range so as to reduce computational complexity,store the current iterative part of the control input,and make constant value compensation.However,in simulation and experiment,it was found that after superposition of the iterative learning controller,the phenomenon of partial divergence of the system tracking error occurred.Therefore,the speed and acceleration characteristics of input trajectories in time domain and frequency domain were analyzed.High⁃frequency noise was introduced in frequency domain,which was found to be the cause of the abovementioned phenomenon,and high⁃frequency components were filtered to solve the problem.To further improve the accuracy of convergence and avoid filtering effective high⁃frequency information in some area,a switchable filter based on the analysis of the frequency characteristics of input trajectory was proposed.Through SIMULINK simulation and dSPACE experimental verification,it was proved that the iterative learning controller of modifying controlled quantity and filter based iterative learning control method are effective.
基金supported by Grants-in-Aid for Scientific Research(No. 20560209)
文摘An efficient critical control system design is proposed in this paper. The key idea is to decompose the design problem into two simpler design steps by the technique used in the classical loop transfer recovery method (LTR). The disturbance cancellation integral controller is used as a basic controller. Since the standard loop transfer recovery method cannot be applied to the disturbance cancellation controller, the nonstandard version recently found is used for the decomposition. Exogenous inputs with constraints both on the amplitude and rate of change are considered. The majorant approach is taken to obtain the analytical sufficient matching conditions. A numerical design example is presented to illustrate the effiectiveness of the proposed design.
文摘The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is presented. The proposed approach is well suited to the design of controllers which must meet a set of conflicting performance specifications. Gain tuning is central to the design process, however, the tuning process is greatly simplified over that presented by the problem of tuning a PID controller for example. The proposed control method is applied to an AC induction motor, with an inner-loop flux vector controller applied to design a position control system. Experimental results verify the effectiveness of this method.
文摘In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.
基金This work was supported by the National Natural Science Foundation of China (No.60574013, 60274009), and the Natural Science Fundation ofLiaoning Province (No.20032020).
文摘This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.