In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
Quantum system is inevitably affected by the external environment in the real world.Two controlled quantum dialogue protocols are put forward based on logicalχ-type states under collective noise environment.One is ag...Quantum system is inevitably affected by the external environment in the real world.Two controlled quantum dialogue protocols are put forward based on logicalχ-type states under collective noise environment.One is against collectivedephasing noise,while the other is against collective-rotation noise.Compared with existing protocols,there exist several outstanding advantages in our proposed protocols:Firstly,theχ-type state is utilized as quantum channels,it possesses better entanglement properties than GHZ state,W state as well as cluster state,which make it difficult to be destroyed by local operations.Secondly,two kinds of logicalχ-type states are constructed by us in theory,which can be perfectly immune to the effects of collective noise.Thirdly,the controller can be offline after quantum distribution and permission announcement,without waiting for all the participants to complete the information coding.Fourthly,the security analysis illuminates that our protocols can not only be free from the information leakage,but also resist against the interceptand-resend attack,the entanglement-and-measure attack,the modification attack,the conspiring attack,and especially the dishonest controller’s attacks.展开更多
S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameter...S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.展开更多
A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems...A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems are employed to approximate the unknown parts of the desired virtual controls,and the approximation errors of fuzzy systems are only required to be norm-bounded.The function tanh(·) is introduced to avoid problems associated with sgn(·).The tracking error is guaranteed to be uniformly ultimately bounded with the aid of an additional adaptive compensation term.Chua's circuit system and R o¨ssler system are presented to illustrate the feasibility and effectiveness of the proposed control technique.展开更多
Monitoring temporal changes in sea level is important in assessing coastal risk.Sea level anomalies at a tide gauge station,if kinematically conceived,include systematic variations such as trend,acceleration,periodic ...Monitoring temporal changes in sea level is important in assessing coastal risk.Sea level anomalies at a tide gauge station,if kinematically conceived,include systematic variations such as trend,acceleration,periodic oscillations,and random disturbances.Among them,the non-stationary nature of the random sea level variations of known or unknown origin at coastal regions has been long recognized by the sea level community.This study proposes the analyses of subgroups of random residual statistics of a rigorously formulated kinematic model solution of tide gauge variations using X-bar and S control charts.The approach is demonstrated using Key West,Florida tide gauge records.The mean and standard errors of 5-year-long subgroups of the residuals revealed that sea level changes at this location have been progressively intensifying from 1913 to the present.Increasing oscillations in sea level at this locality may be attributed partly to the thermal expansion of seawater with increasing temperatures causing larger buoyancy-related sea level fluctuations as well as the intensification of atmospheric events including wind patterns and the impact of changes in inverted barometer effects that will alter coastal risk assessments for the future.展开更多
Based on the deep analysis of the mathematical model of an autonomous underwater vehicle( AUV),comprehensive considerations are given to the coupling effect of AUV's longitudinal velocity on the other degrees of f...Based on the deep analysis of the mathematical model of an autonomous underwater vehicle( AUV),comprehensive considerations are given to the coupling effect of AUV's longitudinal velocity on the other degrees of freedom. In the meantime,discussions are made on the influence of residual buoyancy and restoring moment.A novel S-plane controller established on sliding mode control( SMC) is hereby proposed in this study. The strengths of traditional S-plane controller including simple structure and easily adjustable parameters are maintained in the improved design while the weakness of unsatisfactory control effect at the time of high-speed operation is also overcome. Lyapunov function is introduced to make the stability analysis of the controller before it is successfully applied to the basic motion control of AUV-X. Then the comparative experiment test is carried out between the traditional S-plane controller and the novel S-plane controller. The effectiveness and feasibility of the novel S-plane controller established on sliding mode control in the AUV basic motion control is verified by the comparative analysis of experiment results.展开更多
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to oper...A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.展开更多
A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise...Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.展开更多
Introducing basic design methodology for developing backstepping nonlinear controller for vibration control system. With a simplified second-order system model of nonlinear vibration system (Duffing's equation), wh...Introducing basic design methodology for developing backstepping nonlinear controller for vibration control system. With a simplified second-order system model of nonlinear vibration system (Duffing's equation), where, the process has illustrated the backstepping design step-by-step. Backstepping is a novel nonlinear design tool, which is based on constructing the Lyapunov function for the closed-loop systems and guarantees the stability and tracking performance through energy dissipation. In general, this nonlinear control design approach generates aggressive control effort to reduce the tracking error presented in this control system and significantly improve the system bandwidth. The effectiveness of the design scheme is shown through the computer simulation.展开更多
A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil...A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H ∞ control performance, meanwhile. Finally, based on such a boat, HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.展开更多
In order to solve the complex wiring and low reliability of conventional light control system,an automobile contactless switch light system is designed combined with Hall element and controller area network (CAN) bu...In order to solve the complex wiring and low reliability of conventional light control system,an automobile contactless switch light system is designed combined with Hall element and controller area network (CAN) bus technology.The processing system of electromagnetic compatibility controlled by CAN bus is improved to reduce the electromagnetic interference from the controller and other sources of interference.With Freescale's high-performance single-chip MC9S08DZ60 and CAN transceiver TJA1050,the overall circuit design and software design are presented.The test results show that the designed light control system is feasible.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
基金Project supported by the National Natural Science Foundation of China(Grant No.61502048)the Natural Science Foundation of Shanxi Province of China(Grant No.201801D221159)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China(Grant No.2019L0470)Youth Research Foundation of Shanxi University of Finance and Economics in Shanxi Province of China(Grant No.QN-2016009)
文摘Quantum system is inevitably affected by the external environment in the real world.Two controlled quantum dialogue protocols are put forward based on logicalχ-type states under collective noise environment.One is against collectivedephasing noise,while the other is against collective-rotation noise.Compared with existing protocols,there exist several outstanding advantages in our proposed protocols:Firstly,theχ-type state is utilized as quantum channels,it possesses better entanglement properties than GHZ state,W state as well as cluster state,which make it difficult to be destroyed by local operations.Secondly,two kinds of logicalχ-type states are constructed by us in theory,which can be perfectly immune to the effects of collective noise.Thirdly,the controller can be offline after quantum distribution and permission announcement,without waiting for all the participants to complete the information coding.Fourthly,the security analysis illuminates that our protocols can not only be free from the information leakage,but also resist against the interceptand-resend attack,the entanglement-and-measure attack,the modification attack,the conspiring attack,and especially the dishonest controller’s attacks.
基金Supported by the 863 Project under Grant No.2008AA092301the Fundamental Research Foundation of Harbin Engineering University under Grant No.2007001
文摘S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.
基金supported by the National Natural Science Foundation of China (9071602811001128)
文摘A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems are employed to approximate the unknown parts of the desired virtual controls,and the approximation errors of fuzzy systems are only required to be norm-bounded.The function tanh(·) is introduced to avoid problems associated with sgn(·).The tracking error is guaranteed to be uniformly ultimately bounded with the aid of an additional adaptive compensation term.Chua's circuit system and R o¨ssler system are presented to illustrate the feasibility and effectiveness of the proposed control technique.
文摘Monitoring temporal changes in sea level is important in assessing coastal risk.Sea level anomalies at a tide gauge station,if kinematically conceived,include systematic variations such as trend,acceleration,periodic oscillations,and random disturbances.Among them,the non-stationary nature of the random sea level variations of known or unknown origin at coastal regions has been long recognized by the sea level community.This study proposes the analyses of subgroups of random residual statistics of a rigorously formulated kinematic model solution of tide gauge variations using X-bar and S control charts.The approach is demonstrated using Key West,Florida tide gauge records.The mean and standard errors of 5-year-long subgroups of the residuals revealed that sea level changes at this location have been progressively intensifying from 1913 to the present.Increasing oscillations in sea level at this locality may be attributed partly to the thermal expansion of seawater with increasing temperatures causing larger buoyancy-related sea level fluctuations as well as the intensification of atmospheric events including wind patterns and the impact of changes in inverted barometer effects that will alter coastal risk assessments for the future.
基金Sponsored by the National High Technology Research and Development Program of China(Grant Nos.2011AA09A106,2008AA092301)the National Nature Science Foundation of China(Grant Nos.50909025,51009040 and 51179035)
文摘Based on the deep analysis of the mathematical model of an autonomous underwater vehicle( AUV),comprehensive considerations are given to the coupling effect of AUV's longitudinal velocity on the other degrees of freedom. In the meantime,discussions are made on the influence of residual buoyancy and restoring moment.A novel S-plane controller established on sliding mode control( SMC) is hereby proposed in this study. The strengths of traditional S-plane controller including simple structure and easily adjustable parameters are maintained in the improved design while the weakness of unsatisfactory control effect at the time of high-speed operation is also overcome. Lyapunov function is introduced to make the stability analysis of the controller before it is successfully applied to the basic motion control of AUV-X. Then the comparative experiment test is carried out between the traditional S-plane controller and the novel S-plane controller. The effectiveness and feasibility of the novel S-plane controller established on sliding mode control in the AUV basic motion control is verified by the comparative analysis of experiment results.
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
文摘A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
基金supported Foundation of National Development and Reform Commission of China (No. 2040)
文摘Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.
文摘Introducing basic design methodology for developing backstepping nonlinear controller for vibration control system. With a simplified second-order system model of nonlinear vibration system (Duffing's equation), where, the process has illustrated the backstepping design step-by-step. Backstepping is a novel nonlinear design tool, which is based on constructing the Lyapunov function for the closed-loop systems and guarantees the stability and tracking performance through energy dissipation. In general, this nonlinear control design approach generates aggressive control effort to reduce the tracking error presented in this control system and significantly improve the system bandwidth. The effectiveness of the design scheme is shown through the computer simulation.
文摘A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H ∞ control performance, meanwhile. Finally, based on such a boat, HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.
基金National Natural Science Foundation of China(No.61262007)Guizhou Science and Technology Department School Cooperation Project(Qian Bureau No.[2013]7001)Guiyang Science and Technology Department Platform for Innovation Plan(No.2012303)
文摘In order to solve the complex wiring and low reliability of conventional light control system,an automobile contactless switch light system is designed combined with Hall element and controller area network (CAN) bus technology.The processing system of electromagnetic compatibility controlled by CAN bus is improved to reduce the electromagnetic interference from the controller and other sources of interference.With Freescale's high-performance single-chip MC9S08DZ60 and CAN transceiver TJA1050,the overall circuit design and software design are presented.The test results show that the designed light control system is feasible.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.