The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results i...The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results in enhanced safety and the reduction in maintenance costs. This paper presents a design methodology of life extending control for structural durability and high performance of mechanical system, which is based on an explicit dynamic inversion control scheme. A real-time nonlinear fatigue crack growth model is built to predict fatigue damage resulting from the impact of cyclic bending stress on rotor shaft, which serves as an indicator of service life. The 4-axis gainscheduled flight controller, whose gains are adjusted as a function of damage and flight velocity, is designed to regulate roll attitude, pitch attitude, vertical velocity and yaw rate. The nonlinear system simulation results show that the responses can meet the requirements on ADS-33 Level 1 handling qualities and that the 4-axis decoupling control is realized. As the damage increases, the tracking performance is slightly degraded, which results in smaller transients in bending moment response.展开更多
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows th...To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.展开更多
The current highly competitive environment has driven industries to operate with increasingly restricted profit margins. Thus, it is imperative to optimize production processes. Faced with this scenario, multivariable...The current highly competitive environment has driven industries to operate with increasingly restricted profit margins. Thus, it is imperative to optimize production processes. Faced with this scenario, multivariable predictive control of processes has been presented as a powerful alternative to achieve these goals. Moreover, the rationale for implementation of advanced control and subsequent analysis of its post-match performance also focus on the benefits that this tool brings to the plant. It is therefore essential to establish a methodology for analysis, based on clear and measurable criteria. Currently, there are different methodologies available in the market to assist with such analysis. These tools can have a quantitative or qualitative focus. The aim of this study is to evaluate three of the best current main performance assessment technologies: Minimum Variance Control-Harris Index; Statistical Process Control (Cp and Cpk); and the Qin and Yu Index. These indexes were studied for an alumina plant controlled by three MPC (model predictive control) algorithms (GPC (generalized predictive control), RMPCT (robust multivariable predictive control technology) and ESSMPC (extended state space model predictive controller)) with different results.展开更多
This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output ...This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output variables is developed, which can synchronize hyperchaotic Lu systems asymptotically and globally more easily without knowing the bound of state of the hyperchaotic system. Adaptive laws are introduced to estimate the unknown parameters as well. Simulation results show the effectiveness and flexibility of the proposed control scheme.展开更多
The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control syst...The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control system (RCS) are presented. Subsequently, the cascade control scheme based on the bank-to-turn (B-I-T) steering technique is described. To address the aerodynamic un- certainties encountered by the control system, the active distur- bance rejection control (ADRC) method is introduced in the autopi- lot design. Furthermore, a compound controller, using extended state observer (ESO) to online estimate system uncertainties and calculate derivative of command signals, is designed based on dynamic surface control (DSC). Nonlinear simulation results show the feasibility of the proposed approach and validate the robust- ness of the controller with severe unmodeled dynamics.展开更多
Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at ...Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration,an ensemble-based 3DVAR(En-3DVAR) hybrid data assimilation system for GRAPES-Meso(the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance.Considering the problems of the ensemble-based data assimilation part of the system,including the reduction in the degree of geostrophic balance between variables,and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation,corresponding measures were taken to optimize and ameliorate the system.Accordingly,a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable.A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale.Then,a number of hybrid data assimilation experiments were carried out.The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8.Compared with the 3DVAR data assimilation,the geopotential height forecast of the hybrid data assimilation experiments improved very little,but the wind forecast improved slightly at each forecast time,especially over 300 hPa.Overall,the hybrid data assimilation demonstrates some advantages over the3 DVAR data assimilation.展开更多
Tile basic features of object-oriented software makes it difficult to apply traditional testing methods in objectoriented systems. Control Flow Graph (CFG) is a well-known model used for identification of independen...Tile basic features of object-oriented software makes it difficult to apply traditional testing methods in objectoriented systems. Control Flow Graph (CFG) is a well-known model used for identification of independent paths in procedural software. This paper highlights the problem of constructing CFG in object-oriented systems and proposes a new model named Extended Control Flow Graph (ECFG) for code based analysis of Object-Oriented (OO) software. ECFG is a layered CFG where nodes refer to methods rather than statements. A new metrics Extended Cyclomatic Complexity (E-CC) is developed which is analogous to McCabe's Cyclomatic Complexity (CC) and refers to the number of independent execution paths within the OO software. The different ways in which CFG's of individual methods are connected in an ECFG are presented and formulas for E-CC for these different cases are proposed. Finally we have considered an example in Java and based on its ECFG, applied these cases to arrive at the E-CC of the total system as well as proposed a methodology for calculating the basis set, i.e., the set of independent paths for the OO system that will help in creation of test cases for code testing.展开更多
基金Supported by the National Natural Science Foundation of China(No.61170328)
文摘The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results in enhanced safety and the reduction in maintenance costs. This paper presents a design methodology of life extending control for structural durability and high performance of mechanical system, which is based on an explicit dynamic inversion control scheme. A real-time nonlinear fatigue crack growth model is built to predict fatigue damage resulting from the impact of cyclic bending stress on rotor shaft, which serves as an indicator of service life. The 4-axis gainscheduled flight controller, whose gains are adjusted as a function of damage and flight velocity, is designed to regulate roll attitude, pitch attitude, vertical velocity and yaw rate. The nonlinear system simulation results show that the responses can meet the requirements on ADS-33 Level 1 handling qualities and that the 4-axis decoupling control is realized. As the damage increases, the tracking performance is slightly degraded, which results in smaller transients in bending moment response.
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.
文摘The current highly competitive environment has driven industries to operate with increasingly restricted profit margins. Thus, it is imperative to optimize production processes. Faced with this scenario, multivariable predictive control of processes has been presented as a powerful alternative to achieve these goals. Moreover, the rationale for implementation of advanced control and subsequent analysis of its post-match performance also focus on the benefits that this tool brings to the plant. It is therefore essential to establish a methodology for analysis, based on clear and measurable criteria. Currently, there are different methodologies available in the market to assist with such analysis. These tools can have a quantitative or qualitative focus. The aim of this study is to evaluate three of the best current main performance assessment technologies: Minimum Variance Control-Harris Index; Statistical Process Control (Cp and Cpk); and the Qin and Yu Index. These indexes were studied for an alumina plant controlled by three MPC (model predictive control) algorithms (GPC (generalized predictive control), RMPCT (robust multivariable predictive control technology) and ESSMPC (extended state space model predictive controller)) with different results.
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant No.E0710018)
文摘This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output variables is developed, which can synchronize hyperchaotic Lu systems asymptotically and globally more easily without knowing the bound of state of the hyperchaotic system. Adaptive laws are introduced to estimate the unknown parameters as well. Simulation results show the effectiveness and flexibility of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(11202024)
文摘The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control system (RCS) are presented. Subsequently, the cascade control scheme based on the bank-to-turn (B-I-T) steering technique is described. To address the aerodynamic un- certainties encountered by the control system, the active distur- bance rejection control (ADRC) method is introduced in the autopi- lot design. Furthermore, a compound controller, using extended state observer (ESO) to online estimate system uncertainties and calculate derivative of command signals, is designed based on dynamic surface control (DSC). Nonlinear simulation results show the feasibility of the proposed approach and validate the robust- ness of the controller with severe unmodeled dynamics.
基金Supported by the National Natural Science Foundation of China(91437113 and 41275111)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506005)
文摘Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration,an ensemble-based 3DVAR(En-3DVAR) hybrid data assimilation system for GRAPES-Meso(the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance.Considering the problems of the ensemble-based data assimilation part of the system,including the reduction in the degree of geostrophic balance between variables,and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation,corresponding measures were taken to optimize and ameliorate the system.Accordingly,a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable.A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale.Then,a number of hybrid data assimilation experiments were carried out.The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8.Compared with the 3DVAR data assimilation,the geopotential height forecast of the hybrid data assimilation experiments improved very little,but the wind forecast improved slightly at each forecast time,especially over 300 hPa.Overall,the hybrid data assimilation demonstrates some advantages over the3 DVAR data assimilation.
文摘Tile basic features of object-oriented software makes it difficult to apply traditional testing methods in objectoriented systems. Control Flow Graph (CFG) is a well-known model used for identification of independent paths in procedural software. This paper highlights the problem of constructing CFG in object-oriented systems and proposes a new model named Extended Control Flow Graph (ECFG) for code based analysis of Object-Oriented (OO) software. ECFG is a layered CFG where nodes refer to methods rather than statements. A new metrics Extended Cyclomatic Complexity (E-CC) is developed which is analogous to McCabe's Cyclomatic Complexity (CC) and refers to the number of independent execution paths within the OO software. The different ways in which CFG's of individual methods are connected in an ECFG are presented and formulas for E-CC for these different cases are proposed. Finally we have considered an example in Java and based on its ECFG, applied these cases to arrive at the E-CC of the total system as well as proposed a methodology for calculating the basis set, i.e., the set of independent paths for the OO system that will help in creation of test cases for code testing.