With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic ...With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic movements,the strike-slip faults have controlled the distribution of hydrocarbon resources owing to the special fault characteristics and fault-related structures.In contrast,the kinematics and formation mechanism of strike-slip faults in buried sedimentary basins are difficult to investigate,limiting the discussion of these faults and hydrocarbon accumulation.In this study,we identified the characteristics of massive sigmoidal tension gashes(STGs)that formed in the Shunnan area of the Tarim Basin.High-resolution three-dimensional seismic data and attribute analyses were used to investigate their geometric and kinematic characteristics.Then,the stress state of each point of the STGs was calculated using seismic curvature attributes.Finally,the formation mechanism of the STGs and their roles in controlling hydrocarbon migration and accumulation were discussed.The results suggest that:(1)the STGs developed in the Shunnan area have a wide distribution,with a tensile fault arranged in an enéchelon pattern,showing an S-shaped bending.These STGs formed in multiple stages,and differential rotation occurred along the direction of strike-slip stress during formation.(2)Near the principal displacement zone of the strike-slip faults,the stress value of the STGs was higher,gradually decreasing at both ends.The shallow layer deformation was greater than the deep layer deformation.(3)STGs are critical for connecting source rocks,migrating oil and gas,sealing horizontally,and developing efficient reservoirs.This study not only provides seismic evidence for the formation and evolution of super large STGs,but also provides certain guidance for oil and gas exploration in this area.展开更多
Based on the sheet, scanning electron microscope and high pressure mercury analysis method, this paper takes Jiyuan oilfield-Ma Jia mountain district 4 5 sandstone reservoir as the research object, from the reservoir ...Based on the sheet, scanning electron microscope and high pressure mercury analysis method, this paper takes Jiyuan oilfield-Ma Jia mountain district 4 5 sandstone reservoir as the research object, from the reservoir petrology, pore type and porosity, permeability, the system analyzed the reservoir characteristics and its control factors. The results show that the sandstone in the 4 5 section of Baoziwan-Majiashan area of Jiyuan oilfield is fine in size and high in filling content. The pore types were dominated by intergranular pores and dissolved pores, with a low face rate. The reservoir property is relatively poor, with mean porosity of 11.11% and mean permeability of 1.16 × 10<sup>−</sup><sup>3</sup> µm<sup>2</sup>. In the low porous, low otonic background, the development of relatively high pore hypertonic areas. Compaction and cementation should play a destructive role in reservoir properties, and dissolution should play a positive role in reservoir properties. Compaction adjusts the migration of clay minerals and miscellaneous bases in the original sediment in the study area, greatly reducing the porosity and permeability of the reservoir;the development of the cement cement, carbonate cementation and some quartz secondary compounds reduces the storage space;the dissolution effect, especially the secondary dissolution pores of the reservoir, which obviously improves the properties of the reservoir.展开更多
In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas c...In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas content, adsorption capacity, pores and fissures developments and permeability data, the coalbed methane(CBM) reservoir characteristics and their controlling factors in the eastern Ordos basin is discussed. The results show that, due to undergoing different paleo-temperatures in the geological history,coal rank has a higher trend from the north part to the south and from the shallow part to the inward basin, which determines CBM distribution and recoverability. In the north, although having large coal thickness and high permeability, Zhungeer-Xingxian coal rank is low, and gas content is small. In the central part, with medium rank, higher gas content and relatively high permeability, and the Wubao-Liulin area is the most favorable area in the eastern Ordos basin. In the southern part, medium and high metamorphism coal occurs, and although having the highest gas content, the permeability in the Hancheng area is low due to the development of sheared coal.展开更多
Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution...Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.展开更多
This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspi...This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).展开更多
1 Introduction Reservoir architecture analysis of distributary channel of Daqing oilfield has drawn consistent interest among development geologists and petroleum engineers over the last decade(Lv et al.,1999;Zhou et ...1 Introduction Reservoir architecture analysis of distributary channel of Daqing oilfield has drawn consistent interest among development geologists and petroleum engineers over the last decade(Lv et al.,1999;Zhou et al.,2008;Zhang et展开更多
The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of flo...The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of floods represents influencing and controlling a dynamic process of the system where the main regulation elements are water reservoirs. Control of water outflow from reservoirs is implicitly based on the used model (titled BW) based on FR (fuzzy regulation). Specification of a control algorithm means dealing with the issue of preparing a knowledge base for the process of tuning fuzzy regulators based on an I/O (input/output) matrix obtained by optimization of the target behaviour of WS. Partial results can be compared with the regulation outputs when specialized tuning was used for the fuzzy regulator of the control algorithm. Basic approaches follow from the narrow relation on BW model use to simulate floods, without any connection to real water management system. A generally introduced model allows description of an outflow dynamic system with stochastic inputs using submodels of robust regression in the outflow module. The submodels are constructed on data of historical FS (flood situations).展开更多
The application of conventional flood operation regulation is restricted due to insufficient description of flood control rules for the Pubugou Reservoir in southern China. Based on the requirements of different flood...The application of conventional flood operation regulation is restricted due to insufficient description of flood control rules for the Pubugou Reservoir in southern China. Based on the requirements of different flood control objects, this paper proposes to optimize flood control rules with punishment mechanism by defining different parameters of flood control rules in response to flood inflow forecast and reservoir water level. A genetic algorithm is adopted for solving parameter optimization problem. The failure risk and overflow volume of the downstream insufficient flood control capacity are assessed through the reservoir operation policies. The results show that an optimised regulation can provide better performance than the current flood control rules.展开更多
基金Thanks to the Northwest Oilfield Branch,SINOPEC,for providing the seismic data.We thank Dr.Yi-Duo Liu of University of Houston,Ying-Chang Cao and Fang Hao of China University of Petroleum(East China)for their constructive suggestions of this manuscript.We also thank two anonymous reviewers for their comments that helped us to improve the manuscript.This research is jointly supported by the National Natural Science Foundation of China(No.42272155)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA14010301)+1 种基金the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.41821002)National Natural Science Foundation of China(No.41702138).
文摘With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic movements,the strike-slip faults have controlled the distribution of hydrocarbon resources owing to the special fault characteristics and fault-related structures.In contrast,the kinematics and formation mechanism of strike-slip faults in buried sedimentary basins are difficult to investigate,limiting the discussion of these faults and hydrocarbon accumulation.In this study,we identified the characteristics of massive sigmoidal tension gashes(STGs)that formed in the Shunnan area of the Tarim Basin.High-resolution three-dimensional seismic data and attribute analyses were used to investigate their geometric and kinematic characteristics.Then,the stress state of each point of the STGs was calculated using seismic curvature attributes.Finally,the formation mechanism of the STGs and their roles in controlling hydrocarbon migration and accumulation were discussed.The results suggest that:(1)the STGs developed in the Shunnan area have a wide distribution,with a tensile fault arranged in an enéchelon pattern,showing an S-shaped bending.These STGs formed in multiple stages,and differential rotation occurred along the direction of strike-slip stress during formation.(2)Near the principal displacement zone of the strike-slip faults,the stress value of the STGs was higher,gradually decreasing at both ends.The shallow layer deformation was greater than the deep layer deformation.(3)STGs are critical for connecting source rocks,migrating oil and gas,sealing horizontally,and developing efficient reservoirs.This study not only provides seismic evidence for the formation and evolution of super large STGs,but also provides certain guidance for oil and gas exploration in this area.
文摘Based on the sheet, scanning electron microscope and high pressure mercury analysis method, this paper takes Jiyuan oilfield-Ma Jia mountain district 4 5 sandstone reservoir as the research object, from the reservoir petrology, pore type and porosity, permeability, the system analyzed the reservoir characteristics and its control factors. The results show that the sandstone in the 4 5 section of Baoziwan-Majiashan area of Jiyuan oilfield is fine in size and high in filling content. The pore types were dominated by intergranular pores and dissolved pores, with a low face rate. The reservoir property is relatively poor, with mean porosity of 11.11% and mean permeability of 1.16 × 10<sup>−</sup><sup>3</sup> µm<sup>2</sup>. In the low porous, low otonic background, the development of relatively high pore hypertonic areas. Compaction and cementation should play a destructive role in reservoir properties, and dissolution should play a positive role in reservoir properties. Compaction adjusts the migration of clay minerals and miscellaneous bases in the original sediment in the study area, greatly reducing the porosity and permeability of the reservoir;the development of the cement cement, carbonate cementation and some quartz secondary compounds reduces the storage space;the dissolution effect, especially the secondary dissolution pores of the reservoir, which obviously improves the properties of the reservoir.
基金supported by the National Natural Science Foundation of China (No.41402144)
文摘In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas content, adsorption capacity, pores and fissures developments and permeability data, the coalbed methane(CBM) reservoir characteristics and their controlling factors in the eastern Ordos basin is discussed. The results show that, due to undergoing different paleo-temperatures in the geological history,coal rank has a higher trend from the north part to the south and from the shallow part to the inward basin, which determines CBM distribution and recoverability. In the north, although having large coal thickness and high permeability, Zhungeer-Xingxian coal rank is low, and gas content is small. In the central part, with medium rank, higher gas content and relatively high permeability, and the Wubao-Liulin area is the most favorable area in the eastern Ordos basin. In the southern part, medium and high metamorphism coal occurs, and although having the highest gas content, the permeability in the Hancheng area is low due to the development of sheared coal.
基金financially supported by the National Science Foundation of China(grant No.41372146)
文摘Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.
基金supported by the National Major Science and Technology Project (No.2016ZX05030002)
文摘This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).
基金funding support of this project from National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05010-002-005)
文摘1 Introduction Reservoir architecture analysis of distributary channel of Daqing oilfield has drawn consistent interest among development geologists and petroleum engineers over the last decade(Lv et al.,1999;Zhou et al.,2008;Zhang et
文摘The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of floods represents influencing and controlling a dynamic process of the system where the main regulation elements are water reservoirs. Control of water outflow from reservoirs is implicitly based on the used model (titled BW) based on FR (fuzzy regulation). Specification of a control algorithm means dealing with the issue of preparing a knowledge base for the process of tuning fuzzy regulators based on an I/O (input/output) matrix obtained by optimization of the target behaviour of WS. Partial results can be compared with the regulation outputs when specialized tuning was used for the fuzzy regulator of the control algorithm. Basic approaches follow from the narrow relation on BW model use to simulate floods, without any connection to real water management system. A generally introduced model allows description of an outflow dynamic system with stochastic inputs using submodels of robust regression in the outflow module. The submodels are constructed on data of historical FS (flood situations).
基金funded by the National Natural Science Foundations of China (Nos. 51179130 and 51190094)
文摘The application of conventional flood operation regulation is restricted due to insufficient description of flood control rules for the Pubugou Reservoir in southern China. Based on the requirements of different flood control objects, this paper proposes to optimize flood control rules with punishment mechanism by defining different parameters of flood control rules in response to flood inflow forecast and reservoir water level. A genetic algorithm is adopted for solving parameter optimization problem. The failure risk and overflow volume of the downstream insufficient flood control capacity are assessed through the reservoir operation policies. The results show that an optimised regulation can provide better performance than the current flood control rules.