This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V al...A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V alloy sheets.The microstructures,facture surfaces and microhardness of the welded joints were characterized by using optical microscope,scanning electron microscope (SEM) and Vickers microhardness tester.Comparing with welds such as gas tungsten arc and conventional plasma arc processes,the experimental results revealed the improvements when using the present process including:1) reducing prior-beta (β) grain size and prohibiting formation of hard martensite phases in the fusion zone due to the decreased heat input;and 2) better toughness and higher hardness.展开更多
In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE...In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.展开更多
This paper presents a novel fixed-time stabilization control(FSC)method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two...This paper presents a novel fixed-time stabilization control(FSC)method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two dynamic parameters.Specifically,a set of auxiliary variables is first introduced through state transformation.These variables combine the original system states and the two introduced dynamic parameters,facilitating the closed-loop system stability analyses.Then,the two dynamic parameters are delicately designed by utilizing the Lyapunov method,ensuring that all the closed-loop system states are globally fixed-time stable.Compared with existing results,the“explosion of complexity”problem of backstepping control is avoided.Moreover,the two designed dynamic parameters are dependent on system states rather than a time-varying function,thus the proposed controller is still valid beyond the given fixedtime convergence instant.The effectiveness of the proposed method is demonstrated through two practical systems.展开更多
Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missi...Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance.展开更多
The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with the...The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.展开更多
Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assi...Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assist devices (VADs) in the face of adverse events (AEs) using a resilience-based approach. The objective is to develop a method for integrating resilience attributes into VAD control systems, employing dynamic risk analysis and control strategies. Results: The outcomes include a resilient control architecture enabling anticipatory, regenerative, and degenerative actions in response to AEs. A method of applied resilience (MAR) based on dynamic risk management and resilience attribute analysis was proposed. Conclusion: Dynamic integration between medical and technical teams allows continuous adaptation of control systems to meet patient needs over time, improving reliability, safety, and effectiveness of VADs, with potential positive impact on the health of heart failure patients.展开更多
The entanglement characteristics including the so-called sudden death effect between two identical twolevel atoms trapped in two separate cavities connected by an optical fiber are studied. The results show that the t...The entanglement characteristics including the so-called sudden death effect between two identical twolevel atoms trapped in two separate cavities connected by an optical fiber are studied. The results show that the time evolution of entanglement is sensitive not only to the degree of entanglement of the initial state but also to the ratio between cavity-fiber coupling (v) and atom-cavity coupling (g). This means that the entanglement dynamics can be controlled by choosing specific v and ft.展开更多
In non-equilibrium nonlinear region, the nonlinear equations of time dependence of perturbation amplitude at the solid/liquidinterface during solidification of a dilute binary alloy are established on the base of assu...In non-equilibrium nonlinear region, the nonlinear equations of time dependence of perturbation amplitude at the solid/liquidinterface during solidification of a dilute binary alloy are established on the base of assuming that there is local equilibrium at the solid/liquid interface and considering that curvature, temperature and composition at the solid/liquid interface which are related to the perturbation amplitude are nonlinear. As a result, patterns at the solid/liquid interface during solidification process, which is from nonsteadystate to steady state can be controlled by these nonlinear equations.展开更多
We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditio...We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.展开更多
IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when ...IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when it is in on- state since the channel of the p- MOSFET is pinched- off.During the course of turning off,the channel of the p- MOSFET will prevent the injection of m inorities and introduce an extra access for the carriers to flow to the anode directly,which m akes the IGBT reach its off- state in a shorter time.The simulation results prove that the new structure can reduce the turn- off time by m ore than75 % compared with the normal one under the same break- down voltage and on- state perform ance.Only two more resistors are needed when using this structure,and the re- quirement of the drive circuits is just the sam e as normal.展开更多
The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then th...The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.展开更多
To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories...To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories was developed. Both heat transfer and flux distribution characteristics of the nozzle sprays on the slab were considered, and the complicated boundary conditions, such as spray cooling, natural convection, thermal radiation as well as contact cooling of individual rolls were involved in the model. By using the calibrated caster dependent model factors, the calculated temperature and shell thickness accorded well with the measured. Furthermore, a dynamic secondary water cooling control system was also developed on the basis of a two-dimensional transient heat transfer model (named "online model") and incremental PID control algorithm to reduce slab surface temperature fluctuation in unsteady state. Compared with the traditional spray table control method, the present online model and dynamic PID control demonstrate a higher capability and flexibility to adjust cooling water flowrate and reduce slab surface temperature fluctuation when the casting speed is changed.展开更多
Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and contro...Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and control model with unmatched uncertainties is first formulated for the pitch channel, and an adaptive dynamic surface control algorithm is further developed to deal with these unmatched uncertainties. It is proved that the proposed feedback controller can ensure not only the accuracy of target interception, but also the stability of the missile dynamics. Then, the same control approach is further applied to the control design of the yaw and roll channels. The 6-degree-of-freedom (6-DOF) nonlinear missile simulation results demonstrate the feasibility and advantage of the proposed integrated guidance and control design scheme.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
Parallel manipulators with less than six degrees of freedom (DOF) have been increasingly used in high-speed hybrid machine tools. The structural features of parallel manipulators are dynamic, a characteristic that i...Parallel manipulators with less than six degrees of freedom (DOF) have been increasingly used in high-speed hybrid machine tools. The structural features of parallel manipulators are dynamic, a characteristic that is particularly significant when these manipulators are used in high-speed machine tools. However, normal kinematic control method cannot satisfy the requirements of the control system. Many researchers use model-based dynamic control methods, such as the dynamic feedforward control method. However, these methods are rarely used in hybrid machine tools because of the complex dynamic model of the parallel manipulator. In order to study the dynamic control method of parallel manipulators, the dynamic feedforward control method is used in the dynamic control system of a 3-PSP (prismatic-spherical-prismatic) 3-DOF spatial parallel manipulator used as a spindle head in a high-speed hybrid machine tool. Using kinematic analysis as basis and the Newton-Euler method, we derive the dynamic model of the parallel manipulator. Furthermore, a model-based dynamic feedforward control system consisting of both kinematic control and dynamic control subsystems is established. The dynamic control subsystem consists of two modules. One is used to eliminate the influence of the dynamic characteristics of high-speed movement, and the other is used to eliminate the dynamic disturbances in the milling process. Finally, the simulation model of the dynamic feedforward control system of the 3-PSP parallel manipulator is constructed in Matlab/Simulink. The simulations of the control system eliminating the influence of the dynamic characteristics and dynamic disturbances are conducted. A comparative study between the simulations and the normal kinematic control method is also presented.The simulations prove that the dynamic feedforward control method effectively eliminates the influence of the dynamic disturbances and dynamic characteristics of the parallel manipulator on high-speed machine tools, and significantly improves the trajectory accuracy. This is the first attempt to introduce the dynamic feedfordward control method into the 3-PSP spatial parallel manipulator whose dynamic model is complex and provides a study basis for the real-time dynamic control of the high-speed hybrid machine tools.展开更多
In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let ...In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.展开更多
This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying ...This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach.展开更多
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban...The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
基金Project(2009CB939705) supported by the National Basic Research Program of ChinaProject(200233) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD)
文摘A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V alloy sheets.The microstructures,facture surfaces and microhardness of the welded joints were characterized by using optical microscope,scanning electron microscope (SEM) and Vickers microhardness tester.Comparing with welds such as gas tungsten arc and conventional plasma arc processes,the experimental results revealed the improvements when using the present process including:1) reducing prior-beta (β) grain size and prohibiting formation of hard martensite phases in the fusion zone due to the decreased heat input;and 2) better toughness and higher hardness.
基金supported by the Beijing Natural Science Foundation(4222053).
文摘In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.
基金supported by the National Natural Science Foundation of China(61821004,U1964207,20221017-10)。
文摘This paper presents a novel fixed-time stabilization control(FSC)method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two dynamic parameters.Specifically,a set of auxiliary variables is first introduced through state transformation.These variables combine the original system states and the two introduced dynamic parameters,facilitating the closed-loop system stability analyses.Then,the two dynamic parameters are delicately designed by utilizing the Lyapunov method,ensuring that all the closed-loop system states are globally fixed-time stable.Compared with existing results,the“explosion of complexity”problem of backstepping control is avoided.Moreover,the two designed dynamic parameters are dependent on system states rather than a time-varying function,thus the proposed controller is still valid beyond the given fixedtime convergence instant.The effectiveness of the proposed method is demonstrated through two practical systems.
基金supported by Joint Fund of the Ministry of Education f or Equipment Pre-research (6141A20223)。
文摘Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance.
基金support by the National Natural Science Foundation of China (No. 41372324)support from the Chinese Special Funds for Major State Basic Research Project under Grant No. 2010CB732001
文摘The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.
文摘Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assist devices (VADs) in the face of adverse events (AEs) using a resilience-based approach. The objective is to develop a method for integrating resilience attributes into VAD control systems, employing dynamic risk analysis and control strategies. Results: The outcomes include a resilient control architecture enabling anticipatory, regenerative, and degenerative actions in response to AEs. A method of applied resilience (MAR) based on dynamic risk management and resilience attribute analysis was proposed. Conclusion: Dynamic integration between medical and technical teams allows continuous adaptation of control systems to meet patient needs over time, improving reliability, safety, and effectiveness of VADs, with potential positive impact on the health of heart failure patients.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028 Fujian Provincial Natural Science Foundation under Grant No.2009J06002
文摘The entanglement characteristics including the so-called sudden death effect between two identical twolevel atoms trapped in two separate cavities connected by an optical fiber are studied. The results show that the time evolution of entanglement is sensitive not only to the degree of entanglement of the initial state but also to the ratio between cavity-fiber coupling (v) and atom-cavity coupling (g). This means that the entanglement dynamics can be controlled by choosing specific v and ft.
文摘In non-equilibrium nonlinear region, the nonlinear equations of time dependence of perturbation amplitude at the solid/liquidinterface during solidification of a dilute binary alloy are established on the base of assuming that there is local equilibrium at the solid/liquid interface and considering that curvature, temperature and composition at the solid/liquid interface which are related to the perturbation amplitude are nonlinear. As a result, patterns at the solid/liquid interface during solidification process, which is from nonsteadystate to steady state can be controlled by these nonlinear equations.
文摘We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.
文摘IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when it is in on- state since the channel of the p- MOSFET is pinched- off.During the course of turning off,the channel of the p- MOSFET will prevent the injection of m inorities and introduce an extra access for the carriers to flow to the anode directly,which m akes the IGBT reach its off- state in a shorter time.The simulation results prove that the new structure can reduce the turn- off time by m ore than75 % compared with the normal one under the same break- down voltage and on- state perform ance.Only two more resistors are needed when using this structure,and the re- quirement of the drive circuits is just the sam e as normal.
基金Project (No. 2006C11148) supported by the ScienceTechnology Project of Zhejiang Province, China
文摘The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.
基金supported by the National Natural Science Foundation of China (No.50174031)
文摘To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories was developed. Both heat transfer and flux distribution characteristics of the nozzle sprays on the slab were considered, and the complicated boundary conditions, such as spray cooling, natural convection, thermal radiation as well as contact cooling of individual rolls were involved in the model. By using the calibrated caster dependent model factors, the calculated temperature and shell thickness accorded well with the measured. Furthermore, a dynamic secondary water cooling control system was also developed on the basis of a two-dimensional transient heat transfer model (named "online model") and incremental PID control algorithm to reduce slab surface temperature fluctuation in unsteady state. Compared with the traditional spray table control method, the present online model and dynamic PID control demonstrate a higher capability and flexibility to adjust cooling water flowrate and reduce slab surface temperature fluctuation when the casting speed is changed.
基金supported by National Natural Science Foundation of China (No. 60710002, No. 60974044)
文摘Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and control model with unmatched uncertainties is first formulated for the pitch channel, and an adaptive dynamic surface control algorithm is further developed to deal with these unmatched uncertainties. It is proved that the proposed feedback controller can ensure not only the accuracy of target interception, but also the stability of the missile dynamics. Then, the same control approach is further applied to the control design of the yaw and roll channels. The 6-degree-of-freedom (6-DOF) nonlinear missile simulation results demonstrate the feasibility and advantage of the proposed integrated guidance and control design scheme.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA041901)National S&T Major Project of China(Grant No. 2009ZX04014-035)National Basic Research Program of China (973 Program, Grant No. 2006CB705400)
文摘Parallel manipulators with less than six degrees of freedom (DOF) have been increasingly used in high-speed hybrid machine tools. The structural features of parallel manipulators are dynamic, a characteristic that is particularly significant when these manipulators are used in high-speed machine tools. However, normal kinematic control method cannot satisfy the requirements of the control system. Many researchers use model-based dynamic control methods, such as the dynamic feedforward control method. However, these methods are rarely used in hybrid machine tools because of the complex dynamic model of the parallel manipulator. In order to study the dynamic control method of parallel manipulators, the dynamic feedforward control method is used in the dynamic control system of a 3-PSP (prismatic-spherical-prismatic) 3-DOF spatial parallel manipulator used as a spindle head in a high-speed hybrid machine tool. Using kinematic analysis as basis and the Newton-Euler method, we derive the dynamic model of the parallel manipulator. Furthermore, a model-based dynamic feedforward control system consisting of both kinematic control and dynamic control subsystems is established. The dynamic control subsystem consists of two modules. One is used to eliminate the influence of the dynamic characteristics of high-speed movement, and the other is used to eliminate the dynamic disturbances in the milling process. Finally, the simulation model of the dynamic feedforward control system of the 3-PSP parallel manipulator is constructed in Matlab/Simulink. The simulations of the control system eliminating the influence of the dynamic characteristics and dynamic disturbances are conducted. A comparative study between the simulations and the normal kinematic control method is also presented.The simulations prove that the dynamic feedforward control method effectively eliminates the influence of the dynamic disturbances and dynamic characteristics of the parallel manipulator on high-speed machine tools, and significantly improves the trajectory accuracy. This is the first attempt to introduce the dynamic feedfordward control method into the 3-PSP spatial parallel manipulator whose dynamic model is complex and provides a study basis for the real-time dynamic control of the high-speed hybrid machine tools.
基金supported by National Natural Science Foundation of China(61403013)the Aero-Science Foundation of China(2015ZA51009)
文摘In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.
基金supported by the National Natural Science Foundation of China(6110407361104123)the China Postdoctoral Science Foundation(201003548)
文摘This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)Supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.