A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and assoc...A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions,water vapor convergence,and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions,vapor condensation and depositions,water vapor storage,and heat divergence over raining stratiform regions.展开更多
Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabati...Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parame- ters, which are closely related to the moist adiabatic process and which re?ect the gravitational e?ects of condensed liquid water, are reintroduced or de?ned, including MCAPE [Modi?ed-CAPE (convective avail- able potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modi?ed-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does a?ect the calculated results of CAPE and the gravitational e?ects of condensed liq- uid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidi?cation of liquid water in the reversible adiabatic process.展开更多
Lightning flash activities on the central Tibetan Plateau have been studied by using the satellite-based Light-ning Imaging Sensor (LIS) database from January 1998 to July 2002. The lightning activity shows a clear di...Lightning flash activities on the central Tibetan Plateau have been studied by using the satellite-based Light-ning Imaging Sensor (LIS) database from January 1998 to July 2002. The lightning activity shows a clear diurnal varia-tion on the central Plateau. The peak lightning activity ap-pears at about 17︰00 which is 3 h earlier than that in Jing-zhou, Hubei in the same latitude belt nearby, indicating that the lightning activity is a sensitive indicator of solar heating on the Plateau. The lightning discharge is weaker on the Plateau than Jingzhou, Hubei and other low-altitude conti-nental regions because of the lower convective available po-tential energy (CAPE) on the Plateau. The CAPE on the Plateau is 12 times lower than that in Jingzhou, Hubei, and 20 times lower than that in the sea-level region, such as Guangzhou and Florida. However, the sensitivity of lightning activity to CAPE changes on the Plateau is up to 30 times more sensitive than other prominent low-altitude regions.展开更多
A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery,...A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery, their largescale meteorological conditions, and convective available potential energy (CAPE) are analyzed. It is found that similar diurnal evolution is present in all these MCSs. Their initial convective activities became active at noon LST by solar heating, and then built up rapidly. They formed and reached a peak in the early evening hours around 1800 LST and then abated gradually. Among them, the strongest and largest is the MCS on 26 July, which developed under the conditions of the great upper-level nearly-circular Qinghai-Xizang anticyclonic high and driven by the strong low-level thermal forcing and conditional instability. All these conditions are intimately linked with the thermal effects of the plateau itself. So its development was mainly associated with the relatively pure thermal effects peculiar to the Qinghai-Xizang Plateau. The next strongest one is the MCS on 28 July, which was affected notably by the baroclinic zone linked with the westerly trough. There are different features and development mechanisms between these two strongest MCSs.展开更多
Based on the data of the cases of severe convection weather such as hail,thunderstorm(thunderstorm gale)and short-time heavy precipitation in recent 10 years,the spatial and temporal distribution characteristics of di...Based on the data of the cases of severe convection weather such as hail,thunderstorm(thunderstorm gale)and short-time heavy precipitation in recent 10 years,the spatial and temporal distribution characteristics of different types of severe convection weather were analyzed.The results show that the frequency of severe convection weather tended to increase,of which short-time heavy precipitation and thunderstorm weather rose,and hail and thunderstorm gale weather decreased.Severe convection weather began to extend in late spring and early autumn.Typical cases were selected to analyze the evolution mechanism,and the conceptual models of severe convective weather caused by cold advection forcing,warm advection forcing and baroclinic frontogenesis were obtained.The key predictors for the potential prediction of severe convection weather were proposed,such as CAPE(convective available potential energy)for hail weather,UH index(maximum ascending helicity)for thunderstorm gale and PWV(precipitable water vapor)for short-time heavy precipitation.ERA5 data were used to get the forecast threshold of the key factor of classified severe convection weather,and it was verified that the threshold was available.Meanwhile,the causes of the error of failure cases were analyzed.For instance,the larger deviation of CAPE was caused by the 2 m deviation of temperature.Supplementary correction method and threshold were given to provide a reference for the objective forecast and early warning of severe convection weather.展开更多
强对流降水是天津地区重要的灾害性天气,为了研究该类天气发生发展的动力学、热力学机制,利用NCEP/NCAR再分析资料和FY-2C卫星逐时TBB资料对2008年6月25日天津的强对流降水过程进行研究,然后利用WRF(weather research and forecasting)...强对流降水是天津地区重要的灾害性天气,为了研究该类天气发生发展的动力学、热力学机制,利用NCEP/NCAR再分析资料和FY-2C卫星逐时TBB资料对2008年6月25日天津的强对流降水过程进行研究,然后利用WRF(weather research and forecasting)中尺度数值模式对该次强对流降水过程进行数值模拟和诊断分析。结果表明:中尺度露点锋是该次强对流降水的重要机制,其对应的低层气流辐合所形成的强烈上升运动及相对应的强烈发展的对流云团,是此次天津强对流降水的直接影响系统;对流有效位能等参数的变化非常好地反映出此次强降水天气的发生和发展特征;较大的相对螺旋度与此次强对流天气的发生对应也较好。由此认为,中尺度露点锋锋生的动力学、热力学过程是此次强对流降水天气发生发展的重要机制。展开更多
文摘A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions,water vapor convergence,and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions,vapor condensation and depositions,water vapor storage,and heat divergence over raining stratiform regions.
基金the National Natural Science Fourdation of China under Grant Nos.40375016 , 40428002 InnovationProject of the Chinese Academy of Sciences under Grant No.KZCX-SW-213.
文摘Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parame- ters, which are closely related to the moist adiabatic process and which re?ect the gravitational e?ects of condensed liquid water, are reintroduced or de?ned, including MCAPE [Modi?ed-CAPE (convective avail- able potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modi?ed-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does a?ect the calculated results of CAPE and the gravitational e?ects of condensed liq- uid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidi?cation of liquid water in the reversible adiabatic process.
基金supported by the National Natural Science Foundation of China(Grant No.40135010)the Chinese Academy of Sciences(Grant No.KZCX2-201).
文摘Lightning flash activities on the central Tibetan Plateau have been studied by using the satellite-based Light-ning Imaging Sensor (LIS) database from January 1998 to July 2002. The lightning activity shows a clear diurnal varia-tion on the central Plateau. The peak lightning activity ap-pears at about 17︰00 which is 3 h earlier than that in Jing-zhou, Hubei in the same latitude belt nearby, indicating that the lightning activity is a sensitive indicator of solar heating on the Plateau. The lightning discharge is weaker on the Plateau than Jingzhou, Hubei and other low-altitude conti-nental regions because of the lower convective available po-tential energy (CAPE) on the Plateau. The CAPE on the Plateau is 12 times lower than that in Jingzhou, Hubei, and 20 times lower than that in the sea-level region, such as Guangzhou and Florida. However, the sensitivity of lightning activity to CAPE changes on the Plateau is up to 30 times more sensitive than other prominent low-altitude regions.
基金the Chinese National Climbing Project"The Tibetan Plateau Meteorological Experiment"and in part by the Naltional Natural Science Foundation of China under Grant No.49675296.
文摘A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery, their largescale meteorological conditions, and convective available potential energy (CAPE) are analyzed. It is found that similar diurnal evolution is present in all these MCSs. Their initial convective activities became active at noon LST by solar heating, and then built up rapidly. They formed and reached a peak in the early evening hours around 1800 LST and then abated gradually. Among them, the strongest and largest is the MCS on 26 July, which developed under the conditions of the great upper-level nearly-circular Qinghai-Xizang anticyclonic high and driven by the strong low-level thermal forcing and conditional instability. All these conditions are intimately linked with the thermal effects of the plateau itself. So its development was mainly associated with the relatively pure thermal effects peculiar to the Qinghai-Xizang Plateau. The next strongest one is the MCS on 28 July, which was affected notably by the baroclinic zone linked with the westerly trough. There are different features and development mechanisms between these two strongest MCSs.
基金Supported by the Open-end Funds of Key Laboratory for Disaster Prevention and Mitigation of Qinghai Province(QFZ-2021-Z04)。
文摘Based on the data of the cases of severe convection weather such as hail,thunderstorm(thunderstorm gale)and short-time heavy precipitation in recent 10 years,the spatial and temporal distribution characteristics of different types of severe convection weather were analyzed.The results show that the frequency of severe convection weather tended to increase,of which short-time heavy precipitation and thunderstorm weather rose,and hail and thunderstorm gale weather decreased.Severe convection weather began to extend in late spring and early autumn.Typical cases were selected to analyze the evolution mechanism,and the conceptual models of severe convective weather caused by cold advection forcing,warm advection forcing and baroclinic frontogenesis were obtained.The key predictors for the potential prediction of severe convection weather were proposed,such as CAPE(convective available potential energy)for hail weather,UH index(maximum ascending helicity)for thunderstorm gale and PWV(precipitable water vapor)for short-time heavy precipitation.ERA5 data were used to get the forecast threshold of the key factor of classified severe convection weather,and it was verified that the threshold was available.Meanwhile,the causes of the error of failure cases were analyzed.For instance,the larger deviation of CAPE was caused by the 2 m deviation of temperature.Supplementary correction method and threshold were given to provide a reference for the objective forecast and early warning of severe convection weather.
文摘强对流降水是天津地区重要的灾害性天气,为了研究该类天气发生发展的动力学、热力学机制,利用NCEP/NCAR再分析资料和FY-2C卫星逐时TBB资料对2008年6月25日天津的强对流降水过程进行研究,然后利用WRF(weather research and forecasting)中尺度数值模式对该次强对流降水过程进行数值模拟和诊断分析。结果表明:中尺度露点锋是该次强对流降水的重要机制,其对应的低层气流辐合所形成的强烈上升运动及相对应的强烈发展的对流云团,是此次天津强对流降水的直接影响系统;对流有效位能等参数的变化非常好地反映出此次强降水天气的发生和发展特征;较大的相对螺旋度与此次强对流天气的发生对应也较好。由此认为,中尺度露点锋锋生的动力学、热力学过程是此次强对流降水天气发生发展的重要机制。