The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing...The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically展开更多
Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravi...Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravity conditions. It is found that the thermal convection due to dissipative lateral walls has significant influence on the segregation intensity of the system. The dominant factor in determining the degree of segregation achieved by the system is found to be the relative convection rate between differing species. Moreover, a qualitative explanation is proposed for the relationship between the thermal convection due to dissipative lateral walls and the observed segregation intensity profiles.展开更多
Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall ...Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall current and constant heat flux. It is considered that the porous plate is subjected to constant heat flux. The obtained non-dimensional, non-similar coupled non-linear and partial differential equations have been solved by explicit finite difference technique. Numerical solutions for velocities, temperature and concentration distributions are obtained for various parameters by the above mentioned technique. The local and average shear stresses, Nusselt number as well as Sherwood number are also investigated. The stability conditions and convergence criteria of the explicit finite difference scheme are established for finding the restriction of the values of various parameters to get more accuracy. The obtained results are illustrated with the help of graphs to observe the effects of various legitimate parameters.展开更多
The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface i...The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface in a porous medium. Optimal homotopy analysis method(OHAM) is best candidate to handle highly nonlinear system of differential equations obtained from boundary layer partial differential equations via appropriate transformations. Graphical illustrations depicting different physical arising parameters against velocity, temperature and concentration distributions with required discussion have also been added. Numerically calculated values of skin friction coefficient, local Nusselt and Sherwood numbers are given in the form of table and well argued. It is found that nanofluid velocity increases with increase in mixed convective and viscoelastic parameters but it decreases with the increasing values of porosity parameter. Also, it is observed that Dufour number has opposite behavior on temperature and concentration profiles.展开更多
This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suc...This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.展开更多
The impact of haze radiative effect on summertime 24-h convective precipitation over North China was investigated using WRF model (version 3.3) through model sensitivity studies between scenarios with and without ae...The impact of haze radiative effect on summertime 24-h convective precipitation over North China was investigated using WRF model (version 3.3) through model sensitivity studies between scenarios with and without aerosol radiative effects. The haze radiative effect was represented by incorporating an idealized aerosol optical profile, with AOD values around 1, derived from the aircraft measurement into the WRF shortwave scheme. We found that the shortwave heating induced by aerosol radiative effects would significantly reduce heavy rainfalls, although its effect on the post-frontal localized thunderstorm precipitation was more diverse. To capture the key factors that determine whether precipitation is enhanced or suppressed, model grids with 24-h precipitation difference between the :two scenarios exceeding certain threshold (〉30 mm or〈 -30 mm) were separated into two sets. Analyses of key meteorological variables between the enhanced and suppressed regimes suggested that atmospheric convection was the most important factor that determined whether precipitation was enhanced or suppressed during summertime over North China. The convection was stronger over places with precipitation enhancement over 30 mm. Haze weakened the convection over places with precipitation suppression exceeding 30 mm and caused less water vapor to rise to a higher level and thus further suppressed precipitation. The suppression of precipitation was often accompanied with relatively high convective available potential energy (CAPE), relative humidity (RH) and updraft velocities.展开更多
This article is a brief history of my life from childhood and describes how I became interested in astronomy. Starting from researches using radiative transfer as a main tool, I gradually expanded my research field to...This article is a brief history of my life from childhood and describes how I became interested in astronomy. Starting from researches using radiative transfer as a main tool, I gradually expanded my research field to hydrodynamics (particularly convection, turbulence, pulsation, waves and helioseismology), magnetohydrodynamics and chaotic systems. My recent interest is to develop a sustainable society using solar energy.展开更多
The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and conve...The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and convective boundary condition are also taken into account.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.The resulting nonlinear momentum,energy and nano particle equations are simplifed using similarity transformations.Numerical solutions have been obtained for the velocity,temperature and nanoparticle fraction profles.The influence of physical parameters on the velocity,temperature,nanoparticle fraction,rates of heat transfer and nanoparticle fraction are shown graphically.展开更多
In this paper oscillatory 2-D natural convection from a vertical isothermal wall embedded in a po- rous medium, and originating from the oscillation of longitudinal fluid flow, has been investigated both analytically ...In this paper oscillatory 2-D natural convection from a vertical isothermal wall embedded in a po- rous medium, and originating from the oscillation of longitudinal fluid flow, has been investigated both analytically and numerically. Two asymptotic solutions, valid for large and small values of dimensionless frequency γ respectively, are obtained in the closed form. In the range where the asymptotic solutions break down, numerical results to the governing equations are obtained by local similarity meth- od. Both numerical and analytical results show that pulsatory components of the flow and heat transfer depend only on the parameter γ, and the effect of longitudinal oscillation is to decrease the magnitude or' pulsatory Nusselt number with a phase lag between 0 and 90 deg. A correlation for pulsatory heat trans- fer rates is proposed in the whole range of γ within 3% accuracy compared with the numerical results.展开更多
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.
文摘The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically
基金Supported by the National Natural Science Foundation of China under Grant No 11404104the Natural Science Foundation of Hubei Province of China under Grant No 2014CFC1127
文摘Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravity conditions. It is found that the thermal convection due to dissipative lateral walls has significant influence on the segregation intensity of the system. The dominant factor in determining the degree of segregation achieved by the system is found to be the relative convection rate between differing species. Moreover, a qualitative explanation is proposed for the relationship between the thermal convection due to dissipative lateral walls and the observed segregation intensity profiles.
文摘Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall current and constant heat flux. It is considered that the porous plate is subjected to constant heat flux. The obtained non-dimensional, non-similar coupled non-linear and partial differential equations have been solved by explicit finite difference technique. Numerical solutions for velocities, temperature and concentration distributions are obtained for various parameters by the above mentioned technique. The local and average shear stresses, Nusselt number as well as Sherwood number are also investigated. The stability conditions and convergence criteria of the explicit finite difference scheme are established for finding the restriction of the values of various parameters to get more accuracy. The obtained results are illustrated with the help of graphs to observe the effects of various legitimate parameters.
文摘The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface in a porous medium. Optimal homotopy analysis method(OHAM) is best candidate to handle highly nonlinear system of differential equations obtained from boundary layer partial differential equations via appropriate transformations. Graphical illustrations depicting different physical arising parameters against velocity, temperature and concentration distributions with required discussion have also been added. Numerically calculated values of skin friction coefficient, local Nusselt and Sherwood numbers are given in the form of table and well argued. It is found that nanofluid velocity increases with increase in mixed convective and viscoelastic parameters but it decreases with the increasing values of porosity parameter. Also, it is observed that Dufour number has opposite behavior on temperature and concentration profiles.
文摘This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.
文摘The impact of haze radiative effect on summertime 24-h convective precipitation over North China was investigated using WRF model (version 3.3) through model sensitivity studies between scenarios with and without aerosol radiative effects. The haze radiative effect was represented by incorporating an idealized aerosol optical profile, with AOD values around 1, derived from the aircraft measurement into the WRF shortwave scheme. We found that the shortwave heating induced by aerosol radiative effects would significantly reduce heavy rainfalls, although its effect on the post-frontal localized thunderstorm precipitation was more diverse. To capture the key factors that determine whether precipitation is enhanced or suppressed, model grids with 24-h precipitation difference between the :two scenarios exceeding certain threshold (〉30 mm or〈 -30 mm) were separated into two sets. Analyses of key meteorological variables between the enhanced and suppressed regimes suggested that atmospheric convection was the most important factor that determined whether precipitation was enhanced or suppressed during summertime over North China. The convection was stronger over places with precipitation enhancement over 30 mm. Haze weakened the convection over places with precipitation suppression exceeding 30 mm and caused less water vapor to rise to a higher level and thus further suppressed precipitation. The suppression of precipitation was often accompanied with relatively high convective available potential energy (CAPE), relative humidity (RH) and updraft velocities.
文摘This article is a brief history of my life from childhood and describes how I became interested in astronomy. Starting from researches using radiative transfer as a main tool, I gradually expanded my research field to hydrodynamics (particularly convection, turbulence, pulsation, waves and helioseismology), magnetohydrodynamics and chaotic systems. My recent interest is to develop a sustainable society using solar energy.
文摘The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and convective boundary condition are also taken into account.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.The resulting nonlinear momentum,energy and nano particle equations are simplifed using similarity transformations.Numerical solutions have been obtained for the velocity,temperature and nanoparticle fraction profles.The influence of physical parameters on the velocity,temperature,nanoparticle fraction,rates of heat transfer and nanoparticle fraction are shown graphically.
文摘In this paper oscillatory 2-D natural convection from a vertical isothermal wall embedded in a po- rous medium, and originating from the oscillation of longitudinal fluid flow, has been investigated both analytically and numerically. Two asymptotic solutions, valid for large and small values of dimensionless frequency γ respectively, are obtained in the closed form. In the range where the asymptotic solutions break down, numerical results to the governing equations are obtained by local similarity meth- od. Both numerical and analytical results show that pulsatory components of the flow and heat transfer depend only on the parameter γ, and the effect of longitudinal oscillation is to decrease the magnitude or' pulsatory Nusselt number with a phase lag between 0 and 90 deg. A correlation for pulsatory heat trans- fer rates is proposed in the whole range of γ within 3% accuracy compared with the numerical results.