In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat tran...In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat transfer fluid air,hydrogen,water and nanofluid with alumina particles are used and the the geometric variation of the PCM embedded region is also considered.The finite element method is used as the solver.Dynamic features of heat exchange with various phases are explored for different heat transfer fluid types,Reynolds number(between 100 and 300) and PCM embedded region geometric variation(h_(x)between 0.01 d_(1) and 0.65 d_(1),hybetween 0.1 h_(1) and 0.4 h_(1)).It is observed that discharging time is significantly influenced by the heat transfer fluid type while full phase transition time for air is obtained as more than 10 times when hydrogen is utilized as heat transfer fluid.The best performance is achieved with nanofluid.When the PCM integrated region size is reduced,discharging time is generally reduced while due to the form of the geometry,vortex formation is established in the PCM region.This results in performance degeneration at the highest radius and height of the inner cylinder.Discharging time increases by about 12% when radius of the inner cylinder is increased from h_(x)=0.35 d_(1) to h_(x)=0.45 d_(1).Dynamic features of PCM temperature and liquid fraction are affected with Reynolds number while discharging time is reduced by about 48% when configurations with the lowest and highest Reynolds number are compared.展开更多
A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fract...A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fractal network,and the effective flow rate and effective thermal conductivity of blood were obtained by fractal method.The temperature distribution and ice crystal growth process in biological tissue embedded with two cryoprobes during freezing-thawing process were numerically simulated.The results show that the growth velocity of ice crystal in freezing process from 200 to 400 s is more rapid than that from 400 to 600 s. Thawing process of frozen tissue occurs in the regions around cryoprobes tips and tissue boundary simultaneously,and the phase interfaces are close to each other until ice crystal melts completely.The distance of two cryoprobes has a more profound effect on the temperature distribution in freezing process at 400 s than at 800 s.展开更多
A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It...A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It has been shown that a self-similar solution is possible when the free stream angular velocity and the angular velocity of the cone vary inversely as a linear function of time. The system of ordinary differential equations governing the flow has been solved numerically using an implicit finite difference scheme in combination with the quasi-linearization technique. Both prescribe wall temperature and prescribed heat flux conditions are considered. Numerical results are reported for the skin friction coefficients, Nusselt number and Sherwood number. The effect of various parameters on the velocity, temperature and concentration profiles are also presented here.展开更多
Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoel...Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoelectric conversion element), because the initial investment is large. The final purpose of this research is development of the low temperature difference drive engine supposing use in a hot-springs resort as a power source for electric power generation. In order that a traveler may look at and delight a motion of an engine, it is made to drive at low-speed number of rotations. An engine cycle of this study is aimed at the development of Stirling cycle engine which can maintain high efficiency in small size. This kind of engine has simple structure;it brings low cost, and it is easy to perform maintenance. However, it is difficult to obtain enough output by this type of engine, because of its low temperature difference. This paper deals with the heat transfer characteristic that the working fluid including a phase change material flows into the heating surface from the narrow path. In order to increase the amount of the heat transmission, Diethylether is added to the working fluid. Diethylether is selected as a phase change material (PCM) that has the boiling point which exists between the heat source of high temperature and low temperature. The parameters of the experiment are additive amount of PCM, rotational speed of the displacer piston and temperature of heat transfer surface. It is shown that it is possible to make exchange of heat amount increase by adding phase change material. The result of this research shows the optimal condition of the difference in temperature in heat processing, number of revolutions, and addition concentration of PCM.展开更多
The basic objective of this work is to study the heat transfer of Casson fluid of non-Newtonian nature.The fluid is considered over a vertical plate such that the plate exhibits arbitrary wall shear stress at the boun...The basic objective of this work is to study the heat transfer of Casson fluid of non-Newtonian nature.The fluid is considered over a vertical plate such that the plate exhibits arbitrary wall shear stress at the boundary.Heat transfers due to exponential plate heating and natural convection are due to buoyancy force.Magnetohydrodynamic(MHD)analysis in the occurrence of a uniform magnetic field is also considered.The medium over the plate is porous and hence Darcy’s law is applied.The governing equations are established for the velocity and temperature fields by the usual Boussinesq approximation.The problem is first written in dimensionless form using some useful non-dimensional quantities and then solved.The exact analysis is performed and hence solutions via integral transform are established.The analysis of various pertinent parameters on temperature distribution and velocity field are reported graphically.It is found that pours medium permeability parameter retards the fluid motion whereas,velocity decreases with increasing magnetic parameter.Velocity and temperature decrease with increasing Prandtl number whereas the Grashof number enhances the fluid motion.Further,it is concluded from this study that the results obtained here are more general and in a limiting sense several other solutions can be recovered.The Newtonian fluid results can be easily established by taking the Casson parameter infinitely large i.e.,whenβ→∞.展开更多
This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) ...This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.展开更多
Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretizati...Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model. As the basic required inputs in the numerical simulations, thermal material properties are experimentally measured for three carbon steels and the least squares method is used to statistically derive regression models for the properties, including specific heat and thermal conductivity. The numerical simulation and experimental results show that the setup accuracy of the temperature prediction system of ROT is effectively improved.展开更多
The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanoflu...The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanofluids,composed of water and Al_(2)O_(3),TiO_(2),and Cu nanoparticles,on heat transfer enhancement is examined.The aim of this research is also to analyze the influence of different parameters,including the Rayleigh number(Ra=10^(4)-10^(6)),nanoparticle volume fraction(φ=0%-20%),non-Newtonian power-law indexes(n=0.6-1.4),and fin dimensions(Ar=0.3,0.5,and 0.7).Streamlines and isotherms are used to depict flow and related heat transfer characteristics.Results indicate that thermal performance improves with increasing Rayleigh number,regardless of the nanoparticle type or nanofluid rheological behavior.This suggests that the buoyancy force has a significant impact on heat transfer,particularly near the heat source.The Nusselt number is more sensitive to variations in Cu nanoparticle volume fractions compared to Al₂O₃and TiO₂.Moreover,the average Nusselt numbers for power-law nanofluids with n<1(n>1)are greater(smaller)than for Newtonian fluids due to the decrease(increase)in viscosity with increasing(decreasing)shear rate,at the same values of Rayleigh number Ra owing to the amplification(attenuation)of the convective transfer.Notably,the most substantial enhancement is observed with Cu-water shear-thinning nanofluid,where the Nusselt number increases by 136%when changing from Newtonian to shear thinning behavior and by 154.9%when adding 16%nanoparticle volume fraction.Moreover,an even larger increase of 57%in the average Nusselt number is obtained on increasing the fin length from 0.3 to 0.7.展开更多
The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storag...The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem.Paraffin–CaCl_(2)·6H_(2)O composite PCM was prepared in the laboratory.The composition,phase change latent heat,thermal conductivity,and cemented tailing backfill (CTB) compressive strength of the new material were studied.The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software.The results showed the following:(1) The new paraffin–CaCl_(2)·6H_(2)O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl_(2)·6H_(2)O.(2) The calculation formula of the thermal conductivity of CaCl_(2)·6H_(2)O combined with paraffin was deduced,and the reasons were explained in principle.(3) The“enthalpy–mass scale model”was applied to calculate the phase change latent heat of nonreactive composite PCMs.(4)The addition of the paraffin–CaCl_(2)·6H_(2)O composite PCM reduced the CTB strength but increased its heat absorption capacity.This research can give a theoretical foundation for the use of heat storage backfill in green mines.展开更多
Magnetohydrodynamic (MHD) effect and heat transfer are two key issues for design of dual coolant lead lithium (DCLL) blanket. Flow channel insert (FCI) has been applied to decouple the liquid metal from the walls to e...Magnetohydrodynamic (MHD) effect and heat transfer are two key issues for design of dual coolant lead lithium (DCLL) blanket. Flow channel insert (FCI) has been applied to decouple the liquid metal from the walls to efficiently decline MHD pressure drops and reduce heat losses from the liquid metal for increasing bulk exit temperatures of the blanket. However, there are still big pressure drops and a higher velocity jet located at the gap flow. Moreover, the FCI made from silicon carbide (SiC) constitutes a complex blanket structures which potentially causes special flow phenomena. In the present work, the characteristics of fluid flow and heat transfer in the DCLL blanket channel are investigated for the first wall (FW) sprayed a layer of no-wetting nano coating (NWNC) on its inner surface. The results show that the pressure drop with NWNC wall is oneorder magnitude lower than that with FCI in the general DCLL blanket. The Nusselt number on the NWNC wall is about half of that on the general wall. On this basis, a heat transfer criterion equation of DCLL channel is achieved for the NWNC wall without FCI. The results are compared with that criterion equation of general wall conditions, which indicates the criterion equation can well predict the convection heat transfer of DCLL channel.展开更多
In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, t...In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.展开更多
Theoretical and experimental study has been performed on heat transfer of airwater two phase laminar annular flow through a uniformly heated vertical small tube. Analysis ascertains that the mechanism of heat transfer...Theoretical and experimental study has been performed on heat transfer of airwater two phase laminar annular flow through a uniformly heated vertical small tube. Analysis ascertains that the mechanism of heat transfer is the evaporation of a very thin liquid film attached on the tube wall. The predictions of analytical solutions are quite good compared with the experimental results.展开更多
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green func...Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.展开更多
The metal droplets deposition method(MDDM)is a rapid prototyping technology,implemented via metallurgy bonding within droplets.The anisotropy of heat transfer and re-melting is caused by an asymmetric deposition proce...The metal droplets deposition method(MDDM)is a rapid prototyping technology,implemented via metallurgy bonding within droplets.The anisotropy of heat transfer and re-melting is caused by an asymmetric deposition process.A lattice Boltzmann method(LBM)model is established to predict the heat transfer and phase change in the multi-layer deposition.The prediction model is verified by the experimental temperature profiles in existing literature.The monitoring points are set to compare the temperature profiles,and decoupling analyze the heat transfer mechanism in different positions.The negative relationships between the re-molten volume of the temperature difference,as well as the influence of the dispositive position and the relative position of the adjacent component are observed and analyzed under the heat conduction.This work is helpful to choose the appropriate temperature conditions and the optimal dispositive method.展开更多
To reduce the invasiveness of cryosurgery, a miniaturized cryoprobe is necessary. The authors have developed an ultrafine cryoprobe for realizing low-invasive cryosurgery by local freezing. The objectives of this stud...To reduce the invasiveness of cryosurgery, a miniaturized cryoprobe is necessary. The authors have developed an ultrafine cryoprobe for realizing low-invasive cryosurgery by local freezing. The objectives of this study are to estimate the heat transfer coefficient and investigate the characteristics of the phase change heat transfer in the ultrafine cryoprobe. This cryoprobe has a double-tube structure consisting of two stainless steel microtubes. The outer diameter of the cryoprobe was 550 μm. The alternative Freon HFC-23, which has a boiling point of ?82?C at 0.1 MPa, was used as a refrigerant. To evaluate the characteristics of boiling flow in the cryoprobe, the heat transfer coefficient was estimated. The derived heat transfer coefficient was higher than that obtained from the conventional correlation. Additionally, a bubble expansion model was introduced to evaluate the heat transfer mode of the phase change flow in the ultrafine cryoprobe. This model can estimate the liquid film thickness during the expansion of a single bubble in a microchannel. The experimentally measured wall superheat was much lower than that obtained from the model. Therefore, this result also implied that the heat transfer mode in the ultrafine cryoprobe should be nucleate boiling.展开更多
The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for t...The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for the design of a concentrated solar energy plant requiring PCM thermal energy storage and is part of a wider set of experiments, where several PCMs were tested. An experimental installation was used with a cylindrical vessel with three tubes disposed almost horizontally (5°inclination), containing the phase change material, around which the thermal fluid flowed almost perpendicular to the tubes. The experimental installation allowed to recreate heating and cooling cycles. In order to evaluate the influence of the flow on the rate at which the heating and cooling processes took place, tests were performed at different thermofluid mass flow rates, concluding that there is no great influence, since the thermal resistance inside the tubes is much higher than on the outside. D-mannitol and adipic acid, present different phase change temperatures, 164°C for D-mannitol and 152°C for adipic acid. The average heat transfer coefficient, during the phase change process, was of 340 W/(m<sup>2</sup>K) for D-mannitol and 1320 W/(m<sup>2</sup>K) for adipic acid.展开更多
In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change...In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change. Analytical and experimental methods were used to correlate these equations. Two different forms were used, one for evaporation case and the other for condensation case. Carbon dioxide, CO2, was used as case study. Correlated values of the mean heat transfer coefficients (hcor,.) were compared with the experimental results (he^e) and with other published result, a good agreement was noticed. The resulted correlations can be used to simplify the design and performance studies of both condensers and evaporators.展开更多
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr...A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.展开更多
Understanding lake ice growth and its sensitivity to climate change is vital to understand the thermal regime of thaw lake systems and predict their response to climate change. In this paper, a physically-based, two-d...Understanding lake ice growth and its sensitivity to climate change is vital to understand the thermal regime of thaw lake systems and predict their response to climate change. In this paper, a physically-based, two-dimensional, non-steady mathematical model is developed for studying the role of shallow tundra lakes in the Alaskan Arctic. Both the radiation absorption in lake water and the phase change in permafrost are considerd in the model. The materials the model includes are snow, ice, water, unfrozen and frozen soil (peat, silt, sand and gravel). The basic inputs to the model observed mean daily air temperature and snow depth. The ability of this model to simulate lake ice growth and thickness variation, lake water temperature distribution, the thermal regime of permafrost and talik dynamics beneath lakes, and thawing rate of permafrost below and adjacent to shallow thaw lakes offers the potential to describe the effects of climate change in the Alaskan Arctic.展开更多
文摘In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat transfer fluid air,hydrogen,water and nanofluid with alumina particles are used and the the geometric variation of the PCM embedded region is also considered.The finite element method is used as the solver.Dynamic features of heat exchange with various phases are explored for different heat transfer fluid types,Reynolds number(between 100 and 300) and PCM embedded region geometric variation(h_(x)between 0.01 d_(1) and 0.65 d_(1),hybetween 0.1 h_(1) and 0.4 h_(1)).It is observed that discharging time is significantly influenced by the heat transfer fluid type while full phase transition time for air is obtained as more than 10 times when hydrogen is utilized as heat transfer fluid.The best performance is achieved with nanofluid.When the PCM integrated region size is reduced,discharging time is generally reduced while due to the form of the geometry,vortex formation is established in the PCM region.This results in performance degeneration at the highest radius and height of the inner cylinder.Discharging time increases by about 12% when radius of the inner cylinder is increased from h_(x)=0.35 d_(1) to h_(x)=0.45 d_(1).Dynamic features of PCM temperature and liquid fraction are affected with Reynolds number while discharging time is reduced by about 48% when configurations with the lowest and highest Reynolds number are compared.
基金Project(50436030)supported by the National Natural Science Foundation of China
文摘A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fractal network,and the effective flow rate and effective thermal conductivity of blood were obtained by fractal method.The temperature distribution and ice crystal growth process in biological tissue embedded with two cryoprobes during freezing-thawing process were numerically simulated.The results show that the growth velocity of ice crystal in freezing process from 200 to 400 s is more rapid than that from 400 to 600 s. Thawing process of frozen tissue occurs in the regions around cryoprobes tips and tissue boundary simultaneously,and the phase interfaces are close to each other until ice crystal melts completely.The distance of two cryoprobes has a more profound effect on the temperature distribution in freezing process at 400 s than at 800 s.
文摘A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It has been shown that a self-similar solution is possible when the free stream angular velocity and the angular velocity of the cone vary inversely as a linear function of time. The system of ordinary differential equations governing the flow has been solved numerically using an implicit finite difference scheme in combination with the quasi-linearization technique. Both prescribe wall temperature and prescribed heat flux conditions are considered. Numerical results are reported for the skin friction coefficients, Nusselt number and Sherwood number. The effect of various parameters on the velocity, temperature and concentration profiles are also presented here.
文摘Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoelectric conversion element), because the initial investment is large. The final purpose of this research is development of the low temperature difference drive engine supposing use in a hot-springs resort as a power source for electric power generation. In order that a traveler may look at and delight a motion of an engine, it is made to drive at low-speed number of rotations. An engine cycle of this study is aimed at the development of Stirling cycle engine which can maintain high efficiency in small size. This kind of engine has simple structure;it brings low cost, and it is easy to perform maintenance. However, it is difficult to obtain enough output by this type of engine, because of its low temperature difference. This paper deals with the heat transfer characteristic that the working fluid including a phase change material flows into the heating surface from the narrow path. In order to increase the amount of the heat transmission, Diethylether is added to the working fluid. Diethylether is selected as a phase change material (PCM) that has the boiling point which exists between the heat source of high temperature and low temperature. The parameters of the experiment are additive amount of PCM, rotational speed of the displacer piston and temperature of heat transfer surface. It is shown that it is possible to make exchange of heat amount increase by adding phase change material. The result of this research shows the optimal condition of the difference in temperature in heat processing, number of revolutions, and addition concentration of PCM.
基金The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under Project Number(RGP-2019-6).
文摘The basic objective of this work is to study the heat transfer of Casson fluid of non-Newtonian nature.The fluid is considered over a vertical plate such that the plate exhibits arbitrary wall shear stress at the boundary.Heat transfers due to exponential plate heating and natural convection are due to buoyancy force.Magnetohydrodynamic(MHD)analysis in the occurrence of a uniform magnetic field is also considered.The medium over the plate is porous and hence Darcy’s law is applied.The governing equations are established for the velocity and temperature fields by the usual Boussinesq approximation.The problem is first written in dimensionless form using some useful non-dimensional quantities and then solved.The exact analysis is performed and hence solutions via integral transform are established.The analysis of various pertinent parameters on temperature distribution and velocity field are reported graphically.It is found that pours medium permeability parameter retards the fluid motion whereas,velocity decreases with increasing magnetic parameter.Velocity and temperature decrease with increasing Prandtl number whereas the Grashof number enhances the fluid motion.Further,it is concluded from this study that the results obtained here are more general and in a limiting sense several other solutions can be recovered.The Newtonian fluid results can be easily established by taking the Casson parameter infinitely large i.e.,whenβ→∞.
文摘This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.
基金the National Basic Research Program (973) of China (No. 2006CB705400)the National Natural Science Foundation of China (No. 50575200)
文摘Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model. As the basic required inputs in the numerical simulations, thermal material properties are experimentally measured for three carbon steels and the least squares method is used to statistically derive regression models for the properties, including specific heat and thermal conductivity. The numerical simulation and experimental results show that the setup accuracy of the temperature prediction system of ROT is effectively improved.
基金financial support by Campus France within the framework of the PHC-Maghreb 45990SH Projectsupport from the Tunisian Republic Ministry of Higher Education and Scientific Research for a part of her stay in France.
文摘The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanofluids,composed of water and Al_(2)O_(3),TiO_(2),and Cu nanoparticles,on heat transfer enhancement is examined.The aim of this research is also to analyze the influence of different parameters,including the Rayleigh number(Ra=10^(4)-10^(6)),nanoparticle volume fraction(φ=0%-20%),non-Newtonian power-law indexes(n=0.6-1.4),and fin dimensions(Ar=0.3,0.5,and 0.7).Streamlines and isotherms are used to depict flow and related heat transfer characteristics.Results indicate that thermal performance improves with increasing Rayleigh number,regardless of the nanoparticle type or nanofluid rheological behavior.This suggests that the buoyancy force has a significant impact on heat transfer,particularly near the heat source.The Nusselt number is more sensitive to variations in Cu nanoparticle volume fractions compared to Al₂O₃and TiO₂.Moreover,the average Nusselt numbers for power-law nanofluids with n<1(n>1)are greater(smaller)than for Newtonian fluids due to the decrease(increase)in viscosity with increasing(decreasing)shear rate,at the same values of Rayleigh number Ra owing to the amplification(attenuation)of the convective transfer.Notably,the most substantial enhancement is observed with Cu-water shear-thinning nanofluid,where the Nusselt number increases by 136%when changing from Newtonian to shear thinning behavior and by 154.9%when adding 16%nanoparticle volume fraction.Moreover,an even larger increase of 57%in the average Nusselt number is obtained on increasing the fin length from 0.3 to 0.7.
基金financial support provided by the National Natural Science Foundation of China (No. 52174106)the Key Technology Research and Development Program (No. 2022YFC2905102)。
文摘The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem.Paraffin–CaCl_(2)·6H_(2)O composite PCM was prepared in the laboratory.The composition,phase change latent heat,thermal conductivity,and cemented tailing backfill (CTB) compressive strength of the new material were studied.The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software.The results showed the following:(1) The new paraffin–CaCl_(2)·6H_(2)O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl_(2)·6H_(2)O.(2) The calculation formula of the thermal conductivity of CaCl_(2)·6H_(2)O combined with paraffin was deduced,and the reasons were explained in principle.(3) The“enthalpy–mass scale model”was applied to calculate the phase change latent heat of nonreactive composite PCMs.(4)The addition of the paraffin–CaCl_(2)·6H_(2)O composite PCM reduced the CTB strength but increased its heat absorption capacity.This research can give a theoretical foundation for the use of heat storage backfill in green mines.
基金support from the National Natural Science Foundation of China(Grants 11675077 and51576208)
文摘Magnetohydrodynamic (MHD) effect and heat transfer are two key issues for design of dual coolant lead lithium (DCLL) blanket. Flow channel insert (FCI) has been applied to decouple the liquid metal from the walls to efficiently decline MHD pressure drops and reduce heat losses from the liquid metal for increasing bulk exit temperatures of the blanket. However, there are still big pressure drops and a higher velocity jet located at the gap flow. Moreover, the FCI made from silicon carbide (SiC) constitutes a complex blanket structures which potentially causes special flow phenomena. In the present work, the characteristics of fluid flow and heat transfer in the DCLL blanket channel are investigated for the first wall (FW) sprayed a layer of no-wetting nano coating (NWNC) on its inner surface. The results show that the pressure drop with NWNC wall is oneorder magnitude lower than that with FCI in the general DCLL blanket. The Nusselt number on the NWNC wall is about half of that on the general wall. On this basis, a heat transfer criterion equation of DCLL channel is achieved for the NWNC wall without FCI. The results are compared with that criterion equation of general wall conditions, which indicates the criterion equation can well predict the convection heat transfer of DCLL channel.
基金Projects(51575115,51775122)supported by the National Natural Science Foundation of China
文摘In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.
文摘Theoretical and experimental study has been performed on heat transfer of airwater two phase laminar annular flow through a uniformly heated vertical small tube. Analysis ascertains that the mechanism of heat transfer is the evaporation of a very thin liquid film attached on the tube wall. The predictions of analytical solutions are quite good compared with the experimental results.
基金Project supported by the National Natural Science Foundation of China (No. 50776097)
文摘Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.
基金Project supported by the Foundation for Advanced Research of Equipment (No. 61409230309)。
文摘The metal droplets deposition method(MDDM)is a rapid prototyping technology,implemented via metallurgy bonding within droplets.The anisotropy of heat transfer and re-melting is caused by an asymmetric deposition process.A lattice Boltzmann method(LBM)model is established to predict the heat transfer and phase change in the multi-layer deposition.The prediction model is verified by the experimental temperature profiles in existing literature.The monitoring points are set to compare the temperature profiles,and decoupling analyze the heat transfer mechanism in different positions.The negative relationships between the re-molten volume of the temperature difference,as well as the influence of the dispositive position and the relative position of the adjacent component are observed and analyzed under the heat conduction.This work is helpful to choose the appropriate temperature conditions and the optimal dispositive method.
文摘To reduce the invasiveness of cryosurgery, a miniaturized cryoprobe is necessary. The authors have developed an ultrafine cryoprobe for realizing low-invasive cryosurgery by local freezing. The objectives of this study are to estimate the heat transfer coefficient and investigate the characteristics of the phase change heat transfer in the ultrafine cryoprobe. This cryoprobe has a double-tube structure consisting of two stainless steel microtubes. The outer diameter of the cryoprobe was 550 μm. The alternative Freon HFC-23, which has a boiling point of ?82?C at 0.1 MPa, was used as a refrigerant. To evaluate the characteristics of boiling flow in the cryoprobe, the heat transfer coefficient was estimated. The derived heat transfer coefficient was higher than that obtained from the conventional correlation. Additionally, a bubble expansion model was introduced to evaluate the heat transfer mode of the phase change flow in the ultrafine cryoprobe. This model can estimate the liquid film thickness during the expansion of a single bubble in a microchannel. The experimentally measured wall superheat was much lower than that obtained from the model. Therefore, this result also implied that the heat transfer mode in the ultrafine cryoprobe should be nucleate boiling.
文摘The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for the design of a concentrated solar energy plant requiring PCM thermal energy storage and is part of a wider set of experiments, where several PCMs were tested. An experimental installation was used with a cylindrical vessel with three tubes disposed almost horizontally (5°inclination), containing the phase change material, around which the thermal fluid flowed almost perpendicular to the tubes. The experimental installation allowed to recreate heating and cooling cycles. In order to evaluate the influence of the flow on the rate at which the heating and cooling processes took place, tests were performed at different thermofluid mass flow rates, concluding that there is no great influence, since the thermal resistance inside the tubes is much higher than on the outside. D-mannitol and adipic acid, present different phase change temperatures, 164°C for D-mannitol and 152°C for adipic acid. The average heat transfer coefficient, during the phase change process, was of 340 W/(m<sup>2</sup>K) for D-mannitol and 1320 W/(m<sup>2</sup>K) for adipic acid.
文摘In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change. Analytical and experimental methods were used to correlate these equations. Two different forms were used, one for evaporation case and the other for condensation case. Carbon dioxide, CO2, was used as case study. Correlated values of the mean heat transfer coefficients (hcor,.) were compared with the experimental results (he^e) and with other published result, a good agreement was noticed. The resulted correlations can be used to simplify the design and performance studies of both condensers and evaporators.
基金Projects(50436010,50930005)supported by the National Natural Science Foundation of ChinaProject(U0834002)supported by the Joint Fund of NSFC-Guangdong of China
文摘A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.
基金US National Science Foundation through the NSP OPP-9907541 and China Postdlctoral Science Foundation
文摘Understanding lake ice growth and its sensitivity to climate change is vital to understand the thermal regime of thaw lake systems and predict their response to climate change. In this paper, a physically-based, two-dimensional, non-steady mathematical model is developed for studying the role of shallow tundra lakes in the Alaskan Arctic. Both the radiation absorption in lake water and the phase change in permafrost are considerd in the model. The materials the model includes are snow, ice, water, unfrozen and frozen soil (peat, silt, sand and gravel). The basic inputs to the model observed mean daily air temperature and snow depth. The ability of this model to simulate lake ice growth and thickness variation, lake water temperature distribution, the thermal regime of permafrost and talik dynamics beneath lakes, and thawing rate of permafrost below and adjacent to shallow thaw lakes offers the potential to describe the effects of climate change in the Alaskan Arctic.