This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system i...China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reac...The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reaction rates and energy efficiency. However, there has been limited study on the impact characteristics of the coherent supersonic jet and the conventional supersonic jet. Thus, integrating theoretical models and numerical simulations, an optimized theoretical model was developed to calculate the volume of the impact zone generated by coherent and conventional supersonic jets. The optimized theoretical model was validated by water model experiments. The results show that the jet impact zone volume with coherent supersonic jet is much larger than that with conventional supersonic jet at the same lance height. The kd value, a newly defined variable that is the product of the dimensionless quantity of velocity and free distance, reflects the velocity attenuation and the potential core length of the main supersonic jet, which is a key parameter of the optimized theoretical model. The optimized theoretical model can well predict the jet impact zone volumes of coherent and conventional supersonic jets with the error no more than 3.62 and 9.37%, respectively.展开更多
A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection ...A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.展开更多
In order to ensure the sustainable growth of rural economy,it is necessary to carry out further research on small-scale water conservancy projects and solve the seepage issue in rural areas.Based on the application si...In order to ensure the sustainable growth of rural economy,it is necessary to carry out further research on small-scale water conservancy projects and solve the seepage issue in rural areas.Based on the application significance of small-scale rural water conservancy projects and the analysis of anti-seepage technologies,along with specific examples,this paper specifically discusses the application of high-pressure jet technology,so as to provide reference for the development of engineering construction.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金Project(2020YFF0426370) supported by the National Key Research and Development Program of ChinaProject(SF-202010) supported by the Water Conservancy Technology Demonstration,China。
文摘China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
文摘The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reaction rates and energy efficiency. However, there has been limited study on the impact characteristics of the coherent supersonic jet and the conventional supersonic jet. Thus, integrating theoretical models and numerical simulations, an optimized theoretical model was developed to calculate the volume of the impact zone generated by coherent and conventional supersonic jets. The optimized theoretical model was validated by water model experiments. The results show that the jet impact zone volume with coherent supersonic jet is much larger than that with conventional supersonic jet at the same lance height. The kd value, a newly defined variable that is the product of the dimensionless quantity of velocity and free distance, reflects the velocity attenuation and the potential core length of the main supersonic jet, which is a key parameter of the optimized theoretical model. The optimized theoretical model can well predict the jet impact zone volumes of coherent and conventional supersonic jets with the error no more than 3.62 and 9.37%, respectively.
基金The National Natural Science Foundation of China(No.41967043,52160003)the Natural Science Foundation of Gansu Province(No.20JR5RA461)+1 种基金the Key Project of China Railway Southwest Research Institute Co.,Ltd.(No.2018-KJ003-Z003-XB)the Industrial Support Program of the Higher Education of Gansu Province(No.2020C-40).
文摘A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.
文摘In order to ensure the sustainable growth of rural economy,it is necessary to carry out further research on small-scale water conservancy projects and solve the seepage issue in rural areas.Based on the application significance of small-scale rural water conservancy projects and the analysis of anti-seepage technologies,along with specific examples,this paper specifically discusses the application of high-pressure jet technology,so as to provide reference for the development of engineering construction.