期刊文献+
共找到391篇文章
< 1 2 20 >
每页显示 20 50 100
Wavelet Density Estimation of Censoring Data and Evaluate of Mean Integral Square Error with Convergence Ratio and Empirical Distribution of Given Estimator 被引量:1
1
作者 Mahmoud Afshari 《Applied Mathematics》 2014年第13期2062-2072,共11页
Wavelet has rapid development in the current mathematics new areas. It also has a double meaning of theory and application. In signal and image compression, signal analysis, engineering technology has a wide range of ... Wavelet has rapid development in the current mathematics new areas. It also has a double meaning of theory and application. In signal and image compression, signal analysis, engineering technology has a wide range of applications. In this paper, we use wavelet method, for estimating the density function for censoring data. We evaluate the mean integrated squared error, convergence ratio of given estimator. Also, we obtain empirical distribution of given estimator and verify the conclusion by two simulation examples. 展开更多
关键词 WAVELET Estimation CENSORING mean INTEGRAL ERROR convergence
下载PDF
CONVERGENCE OF LOGARITHMIC MEANS OF MULTIPLE WALSH-FOURIER SERIES 被引量:1
2
作者 G.Gát U.Goginava G.Tkebuchava 《Analysis in Theory and Applications》 2005年第4期326-338,共13页
Norlund logarithmic means of multiple Walsh-Fourier series acting from space L In^d-1 L ([0, 1)d), d≥1 into space weak - LI([0,1)^d) are studied. The maximal Orlicz space such that the Norlund logarithmic means... Norlund logarithmic means of multiple Walsh-Fourier series acting from space L In^d-1 L ([0, 1)d), d≥1 into space weak - LI([0,1)^d) are studied. The maximal Orlicz space such that the Norlund logarithmic means of multiple Walsh-Fourier series for the functions from this space converge in d-dimensional measure is found. 展开更多
关键词 Multiple Walsh-Fourier series convergence in metric and in measure Norlund means
下载PDF
CONVERGENCE OF A CLASS OF MEANS OF H^p FUNCTIONS(0 被引量:1
3
作者 Wang Jiwen Anhui University,China 《Analysis in Theory and Applications》 1993年第4期37-45,共9页
In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases.... In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases.We obtain weak-type estimates for the associated maximal operators and the maximal mean boundedness for the means. 展开更多
关键词 exp p<1)ON COMPACT LIE GROUPS convergence OF A CLASS OF meanS OF H~p FUNCTIONS
下载PDF
MEAN CONVERGENCE OF SOME POSITIVE OPERATORS
4
作者 史应光 《Acta Mathematica Scientia》 SCIE CSCD 1995年第2期136-143,共8页
L'convergence with 0<p<infinity of the positive operators F.(da,f) and G.(da,f), introduced by Nevai P. [3], and Qn,8(da,f), introduced by Hermann T. and Vertesi P. [1] to f is an element of C[-1,1] is prove... L'convergence with 0<p<infinity of the positive operators F.(da,f) and G.(da,f), introduced by Nevai P. [3], and Qn,8(da,f), introduced by Hermann T. and Vertesi P. [1] to f is an element of C[-1,1] is proved to hold for very general measures. 展开更多
关键词 POSITIVE OPERATORS mean convergence ORTHOGONAL POLYNOMIALS
下载PDF
MEAN CONVERGENCE OF HERMITE-FEJER TYPE INTERPOLATION ON AN ARBITRARY SYSTEM OF NODES
5
作者 FengYongping CuiJunzhi 《Analysis in Theory and Applications》 2004年第3期199-214,共16页
In this paper sufficient conditions for mean convergence and rate of convergence of Hermite-Fejer type interpolation in the Lp norm on an arbitrary system of nodes are presented.
关键词 Hermite-Fejer interpolation mean convergence Hermite interpolation Rate of convergence
下载PDF
WEIGHTED MEAN CONVERGENCE OF HAKOPIAN INTERPOLATION ON THE DISK
6
作者 Xuezhang Liang Renzhong Feng Xuenan Sun 《Analysis in Theory and Applications》 2007年第3期213-227,共15页
In this paper, we study weighted mean integral convergence of Hakopian interpolation on the unit disk D. We show that the inner product between Hakopian interpolation polynomial Hn(f;x,y) and a smooth function g(x,... In this paper, we study weighted mean integral convergence of Hakopian interpolation on the unit disk D. We show that the inner product between Hakopian interpolation polynomial Hn(f;x,y) and a smooth function g(x,y) on D converges to that of f(x,y) and g(x,y) on D when n →∞ , provided f(x,y) belongs to C(D) and all first partial derivatives of g(x,y) belong to the space LipM^α(0 〈 α ≤1). We further show that provided all second partial derivatives of g(x,y) also belong to the space LipM^α and f(x,y) belongs to C^1 (D), the inner product between the partial derivative of Hakopian interpolation polynomial δ/δx Hn(f;z,y) and g(x,y) on D converges to that between δ/δxf(x,y) and g(x,y) on D when n →∞. oo. 展开更多
关键词 Hakopian interpolation weighted mean convergence
下载PDF
The Mean Convergence Order of Extended Hermite-Fejér Interpolation Operators
7
作者 文成林 田继善 《Chinese Quarterly Journal of Mathematics》 CSCD 1997年第4期70-74, ,共5页
Weighted Lp mean convergence of Extended Hermite-Fejer operators based on the zeros of orthogonal polynomials with respct to the general weight and Jacobi weight is investigated. Suf ficient conditions for such conve... Weighted Lp mean convergence of Extended Hermite-Fejer operators based on the zeros of orthogonal polynomials with respct to the general weight and Jacobi weight is investigated. Suf ficient conditions for such convergence for all continuous functions are given. 展开更多
关键词 INTERPOLATION orthogonal polynomial weight function mean convergence
下载PDF
MEAN CONVERGENCE OF HERMITE-FEJER TYPE INTERPOLATION
8
作者 Shi Yingguang Chinese Academy of Sciences 《Analysis in Theory and Applications》 1993年第2期89-103,共15页
L' convergence of Hermite-Fejer interpolation and quasi-Hermite-Fejer interpolation based upon ze- ros of general orthogonal polynomials is investigated. This paper 'almost' characterizes such convergence ... L' convergence of Hermite-Fejer interpolation and quasi-Hermite-Fejer interpolation based upon ze- ros of general orthogonal polynomials is investigated. This paper 'almost' characterizes such convergence for all continuous functions. 展开更多
关键词 mean convergence OF HERMITE-FEJER TYPE INTERPOLATION APPI MATH IIH
下载PDF
L^p CONVERGENCE OF CESRO MEANS ON SPHERE
9
作者 Dai Feng (Beijing Normal University, China) Zhang Xirong (North China Electric Power University, China) 《Analysis in Theory and Applications》 2000年第3期42-47,共6页
Let R be r-dimensional Euclidean space with . Denote by the unit sphere in For we denote by (f) its Cesàro means of order for spherical harmonic expansions. The special value of is known as the critical o... Let R be r-dimensional Euclidean space with . Denote by the unit sphere in For we denote by (f) its Cesàro means of order for spherical harmonic expansions. The special value of is known as the critical one. For , we set This paper proves that N^co u holds for a,ty f e L,0 (log+ L)2~po (log+ log+ L)'(,0~', forth I > 1. 展开更多
关键词 L~p convergence OF CES RO meanS ON SPHERE
下载PDF
ON THE LOCALIZATION AND CONVERGENCE OF MULTIPLE FOURIER INTEGRAL BY BOCHNER-RIESZ MEANS
10
作者 Yu Maohe Kunming Hydropower Scientific Research Institute, China 《Analysis in Theory and Applications》 1993年第2期37-49,共13页
In this paper we consider lim _(R-) B_R^(f,x_0), in one case that f_x_0 (t) is a ABMV function on [0, ∞], and in another case that f∈L_(m-1)~1(R~) and x^k/~kf∈BV(R) when |k| = m-1 and f(x) = 0 when |x -x_0|<δ f... In this paper we consider lim _(R-) B_R^(f,x_0), in one case that f_x_0 (t) is a ABMV function on [0, ∞], and in another case that f∈L_(m-1)~1(R~) and x^k/~kf∈BV(R) when |k| = m-1 and f(x) = 0 when |x -x_0|<δ for some δ>0. Our theormes improve the results of Pan Wenjie ([1]). 展开更多
关键词 LIM ON THE LOCALIZATION AND convergence OF MULTIPLE FOURIER INTEGRAL BY BOCHNER-RIESZ meanS
下载PDF
Some Mean Convergence Theorems for the Maximum of Normed Double Sums of Banach Space Valued Random Elements
11
作者 Andrew ROSALSKY Le Van THANH Nguyen Thi THUY 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第7期1727-1740,共14页
In this correspondence,we establish mean convergence theorems for the maximum of normed double sums of Banach space valued random elements.Most of the results pertain to random elements which are M-dependent.We expand... In this correspondence,we establish mean convergence theorems for the maximum of normed double sums of Banach space valued random elements.Most of the results pertain to random elements which are M-dependent.We expand and improve a number of particular cases in the literature on mean convergence of random elements in Banach spaces.One of the main contributions of the paper is to simplify and improve a recent result of Li,Presnell,and Rosalsky[Journal of Mathematical Inequalities,16,117–126(2022)].A new maximal inequality for double sums of M-dependent random elements is proved which may be of independent interest.The sharpness of the results is illustrated by four examples. 展开更多
关键词 Double sum mean convergence Rademacher type p Banach space Banach space valued random element M-dependent random elements
原文传递
Some Improvement on Convergence Rates of Kernel Density Estimator 被引量:1
12
作者 Xiaoran Xie Jingjing Wu 《Applied Mathematics》 2014年第11期1684-1696,共13页
In this paper two kernel density estimators are introduced and investigated. In order to reduce bias, we intuitively subtract an estimated bias term from ordinary kernel density estimator. The second proposed density ... In this paper two kernel density estimators are introduced and investigated. In order to reduce bias, we intuitively subtract an estimated bias term from ordinary kernel density estimator. The second proposed density estimator is a geometric extrapolation of the first bias reduced estimator. Theoretical properties such as bias, variance and mean squared error are investigated for both estimators. To observe their finite sample performance, a Monte Carlo simulation study based on small to moderately large samples is presented. 展开更多
关键词 KERNEL Density Estimation GEOMETRIC EXTRAPOLATION BIAS Reduction mean Squared Error convergence Rate
下载PDF
On complete convergence in Marcinkiewicz-Zygmund type SLLN for random variables
13
作者 Anna Kuczmaszewska YAN Ji-gao 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第3期342-353,共12页
We consider a generalization of Baum-Katz theorem for random variables satisfying some cover conditions.Consequently,we get the results for many dependent structures,such as END,ϱ^(*)mixing,ϱ^(-)mixing andφ-mixing,etc.
关键词 complete convergence Marcinkiewicz-Zygmund type SLLN weakly mean bounded
下载PDF
Theoretical convergence analysis of complex Gaussian kernel LMS algorithm
14
作者 Wei Gao Jianguo Huang +1 位作者 Jing Han Qunfei Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期39-50,共12页
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no... With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary. 展开更多
关键词 nonlinear adaptive filtering complex Gaussian kernel convergence analysis non-circular data kernel least mean square(KLMS).
下载PDF
Convergence Rate of Estimator forNonparametric Regression Model under ρ-mixing Errors
15
作者 ttU Qi HUANG Qian +1 位作者 YANG Wen-zhi LI Xiao-qin 《Chinese Quarterly Journal of Mathematics》 2017年第4期407-414,共8页
In this paper, we investigate the nonparametric regression model based on ρ-mixing errors, which are stochastically dominated by a nonnegative random variable. Weobtain the convergence rate for the weighted estimator... In this paper, we investigate the nonparametric regression model based on ρ-mixing errors, which are stochastically dominated by a nonnegative random variable. Weobtain the convergence rate for the weighted estimator of unknown function g(x) in pth-mean, which yields the convergence rate in probability. Moreover, an example of the nearestneighbor estimator is also illustrated and the convergence rates of estimator are presented. 展开更多
关键词 convergence rate pth-mean Ρ-MIXING sequence NONPARAMETRIC regressionmodel
下载PDF
Convergence Properties of Piecewise Power Approximations
16
作者 Arcady Ponosov Anna Machina Valeria Tafintseva 《Applied Mathematics》 2016年第13期1440-1445,共16页
We address the problem of convergence of approximations obtained from two versions of the piecewise power-law representations arisen in Systems Biology. The most important cases of mean-square and uniform convergence ... We address the problem of convergence of approximations obtained from two versions of the piecewise power-law representations arisen in Systems Biology. The most important cases of mean-square and uniform convergence are studied in detail. Advantages and drawbacks of the representations as well as properties of both kinds of convergence are discussed. Numerical approximation algorithms related to piecewise power-law representations are described in Appendix. 展开更多
关键词 Power-Law Representations Piecewise Nonlinear Approximations Least-Squares Minimization mean-Square and Uniform convergence
下载PDF
基于平均密度优化初始聚类中心的k-means算法 被引量:32
17
作者 邢长征 谷浩 《计算机工程与应用》 CSCD 2014年第20期135-138,共4页
现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来... 现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来,计算出剩余数据集样本的平均密度,孤立点不参与聚类过程中各类所含样本均值的计算;在大于平均密度的密度参数集合中选择聚类中心,根据最小距离原则将孤立点分配给离它最近的聚类中心,直至将数据集完整分类。实验结果表明,这种基于平均密度优化初始聚类中心的k-means算法比现有的基于密度的k-means算法有更快的收敛速度,更强的稳定性及更高的聚类精度,消除了聚类结果对孤立点的敏感性。 展开更多
关键词 K-meanS算法 聚类中心 平均密度 孤立点 收敛
下载PDF
Mean Shift算法的收敛性分析 被引量:48
18
作者 文志强 蔡自兴 《软件学报》 EI CSCD 北大核心 2007年第2期205-212,共8页
作为迭代算法,Mean Shift的收敛性研究是应用的基础,而Comaniciu和李乡儒分别证明了Mean Shift的收敛性,但证明过程存在错误.首先指出了Comaniciu和李乡儒的证明过程存在错误;然后,从数学上重新证明了Mean Shift算法的局部收敛性,并指... 作为迭代算法,Mean Shift的收敛性研究是应用的基础,而Comaniciu和李乡儒分别证明了Mean Shift的收敛性,但证明过程存在错误.首先指出了Comaniciu和李乡儒的证明过程存在错误;然后,从数学上重新证明了Mean Shift算法的局部收敛性,并指出其收敛到局部极大值的条件;最后,从几何上举反例分析了Mean Shift的收敛性,并进行了深入比较和讨论.这为Mean Shift算法的深入研究及应用奠定了基础. 展开更多
关键词 mean SHIFT算法 收敛性 核函数 核密度估计 梯度上升方法
下载PDF
Mean Shift算法的收敛性讨论 被引量:4
19
作者 王杰 王加银 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期472-475,共4页
作为一种有效的迭代算法,Mean Shift具有的良好的特性,在聚类分析、视觉跟踪、图像平滑和图像分割等领域得到广泛应用.李乡儒指出了Comuniciu关于算法收敛性证明中的错误,并给出了一个算法收敛的间接条件.但是用什么样的核函数、在什么... 作为一种有效的迭代算法,Mean Shift具有的良好的特性,在聚类分析、视觉跟踪、图像平滑和图像分割等领域得到广泛应用.李乡儒指出了Comuniciu关于算法收敛性证明中的错误,并给出了一个算法收敛的间接条件.但是用什么样的核函数、在什么条件下算法收敛仍然没有直接的结果.本文首先指出最近发表的一篇文献中关于MeanShift算法收敛条件及证明过程理解上的错误.然后对常用的核函数用于算法时的收敛性进行分析,得到了几个对算法扩展和应用有意义的结论. 展开更多
关键词 图像处理 mean SHIFT 收敛性 核函数
下载PDF
基于共轭梯度法的快速Mean Shift图像分割 被引量:3
20
作者 李艳灵 沈轶 《光电工程》 CAS CSCD 北大核心 2009年第8期94-99,共6页
针对均值漂移算法收敛速度较慢的问题,本文提出了基于共轭梯度的快速均值漂移算法,并将其用于图像分割。该算法利用共轭梯度法简便,存储需求小,收敛速度介于最速下降法和牛顿法之间,具有较好的全局收敛性和较快的收敛速度的特点,通过交... 针对均值漂移算法收敛速度较慢的问题,本文提出了基于共轭梯度的快速均值漂移算法,并将其用于图像分割。该算法利用共轭梯度法简便,存储需求小,收敛速度介于最速下降法和牛顿法之间,具有较好的全局收敛性和较快的收敛速度的特点,通过交替执行均值漂移算法和共轭梯度算法提高经典均值漂移算法的收敛速度。对合成图像和真实图像的实验结果表明了新算法不但提高了经典均值漂移算法的速度,而且在进行图像分割时保持了良好的分割结果。 展开更多
关键词 图像分割 均值漂移 共轭梯度算法 收敛性
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部