期刊文献+
共找到11,894篇文章
< 1 2 250 >
每页显示 20 50 100
Supersonic swirling characteristics of natural gas in convergent-divergent nozzles 被引量:10
1
作者 Wen Chuang Cao Xuewen Yang Yan Zhang Jing 《Petroleum Science》 SCIE CAS CSCD 2011年第1期114-119,共6页
The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerical... The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle. 展开更多
关键词 Swirling flow convergent-divergent nozzle SUPERSONIC natural gas separation numerical calculation
下载PDF
Unsteady Behavior of Cavitating Waterjet in an Axisymmetric Convergent-Divergent Nozzle: High Speed Observation and Image Analysis Based on Frame Difference Method 被引量:3
2
作者 Shota Hayashi Keiichi Sato 《Journal of Flow Control, Measurement & Visualization》 2014年第3期94-104,共11页
Although it is well known that cloud cavitation shows unsteady behavior with the growing motion of an attached cavity, the shedding motion of a cloud, the collapsing motion of the cloud shed downstream and a reentrant... Although it is well known that cloud cavitation shows unsteady behavior with the growing motion of an attached cavity, the shedding motion of a cloud, the collapsing motion of the cloud shed downstream and a reentrant motion in flow fields such as on a 2-D hydrofoil and in a convergent- divergent channel with a rectangular cross-section, observations for the periodic behavior of cloud cavitation in a cylindrical nozzle with a convergent-divergent part, which is mainly used in an industrial field, have hardly been conducted. From engineering viewpoints, it is important to elucidate the mechanism of periodic cavitation behavior in a cylindrical nozzle. In this study, a high-speed observation technique with an image analysis technique was applied to the cloud cavitation behavior in the nozzle to make clear the mechanism of unsteady behavior. As a result, it was observed in the nozzle that the periodic behavior occurs in the cloud cavitation and pressure waves form at the collapse of clouds shed downstream. Also, it was found through the image analysis based on the present technique that the pressure wave plays a role as a trigger mechanism to cause a reentrant motion at the downstream end of an attached cavity. 展开更多
关键词 Cloud CAVITATION Cylindrical convergent-divergent nozzle High Speed OBSERVATION Image ANALYSIS
下载PDF
The Optimization Design of the Nozzle Section for theWater Jet Propulsion System Applied in Jet Skis
3
作者 Cheng-Yeh Li Jui-Hsiang Kao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2277-2304,共28页
The performance of a water jet propulsion system is related to the inlet duct,rotor,stator,and nozzle.Generally,the flow inlet design must fit the bottom line of the hull,and the design of the inlet duct is often limi... The performance of a water jet propulsion system is related to the inlet duct,rotor,stator,and nozzle.Generally,the flow inlet design must fit the bottom line of the hull,and the design of the inlet duct is often limited by stern space.The entire section,from the rotor to the nozzle through the stator,must be designed based on system integration in that the individual performance of these three components will influence each other.Particularly,the section from the rotor to the nozzle significantly impacts the performance of a water jet propulsion system.This study focused on nozzle design and established referable analysis results to facilitate subsequent integrated studies on the design parameters regarding nozzle contour.Most existing studies concentrate on discussions on rotor design and the tip leakage flow of rotors or have replaced the existing complex computational domain with a simple flow field.However,research has yet to implement an integrated,optimal design of the section from the rotor to the nozzle.Given the above,our program conducted preliminary research on this system integration design issue,discussed the optimal nozzle for this section in-depth,and proposed design suggestions based on the findings.This program used an existing model as the design case.This study referred to the actual trial data as the design conditions for the proposed model.Unlike prior references’simple flow field form,this study added a jet ski geometry and free surface to the computational domain.After the linear hull shape was considered,the inflow in the inlet duct would be closer to the actual condition.Based on the numerical calculation result,this study recommends that the optimal nozzle outlet area should be 37%of the inlet area and that the nozzle contour should be linear.Furthermore,for the pump head,static pressure had a more significant impact than dynamic pressure. 展开更多
关键词 Water jet propulsion system ROTOR nozzle outlet area nozzle contour
下载PDF
Jet Characteristics and Optimization of a Cavitation Nozzle for Hydraulic Fracturing Applications
4
作者 Yu Gao Zhenqiang Xu Kaixiang Shen 《Fluid Dynamics & Materials Processing》 EI 2024年第1期179-192,共14页
Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perfora... Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool.In this study,the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ωturbulence model.The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect.Through orthogonal experiments,the nozzle geometric parameters are optimized,and the following configuration is found accordingly:contraction angle 20°,contraction segment length 6 mm,cylindrical segment diameter 6 mm,cylindrical segment length 12 mm,spread segment length 10 mm,and spread angle 55°. 展开更多
关键词 Cavitation jet angle nozzle hydraulic characteristics nozzle parameters
下载PDF
Sensitivity Analysis of Injection Characteristic to Structural Parameters of GDI Injector Nozzle Hole
5
作者 Li Xinhai Wang Lu +1 位作者 Cheng Yong Shang Xianshang 《内燃机学报》 EI CAS CSCD 北大核心 2024年第6期541-548,共8页
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho... The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases. 展开更多
关键词 gasoline direct injection injector nozzle hole conicity nozzle hole entrance radius CAVITATION
下载PDF
Verification and Validation of High-Resolution Inviscid and Viscous Conical Nozzle Flows
6
作者 Luciano K.Araki Rafael B.de R.Borges +1 位作者 Nicholas Dicati P.da Silva Chi-Wang Shu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期533-549,共17页
Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g... Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g.,rectangular.The inverse Lax-Wendroff(ILW)procedure can handle complex geometries for rectangular meshes.High-resolution and high-order methods can capture elaborated flow structures and phenomena.They also have strong mathematical and physical backgrounds,such as positivity-preserving,jump conditions,and wave propagation concepts.We perceive an effort toward direct numerical simulation,for instance,regarding weighted essentially non-oscillatory(WENO)schemes.Thus,we propose to solve a challenging engineering application without turbulence models.We aim to verify and validate recent high-resolution and high-order methods.To check the solver accuracy,we solved vortex and Couette flows.Then,we solved inviscid and viscous nozzle flows for a conical profile.We employed the finite difference method,positivity-preserving Lax-Friedrichs splitting,high-resolution viscous terms discretization,fifth-order multi-resolution WENO,ILW,and third-order strong stability preserving Runge-Kutta.We showed the solver is high-order and captured elaborated flow structures and phenomena.One can see oblique shocks in both nozzle flows.In the viscous flow,we also captured a free-shock separation,recirculation,entrainment region,Mach disk,and the diamond-shaped pattern of nozzle flows. 展开更多
关键词 HIGH-RESOLUTION COMPRESSIBLE NAVIER-STOKES Free-shock separation nozzle flow
下载PDF
Multi-Physics Coupled Acoustic-Mechanics Analysis and Synergetic Optimization for a Twin-Fluid Atomization Nozzle
7
作者 Wenying Li Yanying Li +4 位作者 Yingjie Lu Jinhuan Xu Bo Chen Li Zhang Yanbiao Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期204-223,共20页
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul... Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research. 展开更多
关键词 Twin-fluid nozzle BP neural network Multi-objective optimization Multi-physics coupled Acousticmechanics analysis Genetic algorithm
下载PDF
Effect of Nozzle Inclination Angle on Fuel-Air Mixing and Combustion in a Heavy Fuel Engine
8
作者 Zhigang Wang Bin Zheng +4 位作者 Peidong Zhao Baoli Wang Fanyan Meng Wenke Xu Jian Meng 《Fluid Dynamics & Materials Processing》 EI 2024年第2期365-382,共18页
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me... Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%. 展开更多
关键词 Aviation heavy fuel piston engine nozzle inclination angle COMBUSTION fuel-air mixing
下载PDF
Effect of droplet characteristics on liquid-phase distribution in spray zone of internal mixing air-mist nozzle
9
作者 Wei-li Wu Chang-gui Cheng +2 位作者 Yang Li Shi-fa Wei De-li Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第2期185-196,共12页
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord... In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction. 展开更多
关键词 continuous casting secondary cooling zone internal mixing air-mist nozzle droplet characteristics liquid phase distribution water flow rate
下载PDF
Research on static characteristic of double redundance double nozzle flapper valve based on AMESim
10
作者 孙亚南 LIANG Qiuhui +2 位作者 WANG Wentao YANG Guang ZHANG Wei 《High Technology Letters》 EI CAS 2024年第2期164-169,共6页
The feedback spring rod of the armature assembly is cancelled in the double redundance double nozzle flapper valve(DRDNFV),and the difficulty of valve core displacement control is increased.Therefore,this paper intend... The feedback spring rod of the armature assembly is cancelled in the double redundance double nozzle flapper valve(DRDNFV),and the difficulty of valve core displacement control is increased.Therefore,this paper intends to study the static characteristic of DRDNFV through the AMESet and AMESim simulation.It is explored under the circumstance of the fixed orifices being clogged and experimentally verified on the test bench.The results show that the pressure gain increases and the flow gain decreases with the increasing clogged degree of the fixed orifices on both sides.The zero bias increases synchronously with the increasing clogged degree of the unilateral fixed orifice.The experimental results are basically consistent with the theoretical curves and the theoretical correctness of the simulation model is effectively verified.The results can provide the theoretical reference for design,debugging,maintenance and fault diagnosis of DRDNFV. 展开更多
关键词 double redundance double nozzle flapper valve(DRDNFV) AMESet torquemotor armature assembly fault diagnosis
下载PDF
Application of Thermodynamic Database to Corrosion of ZrO_(2) Containing Submerged Entry Nozzle in Steel Continuous Casting Process
11
作者 In-Ho JUNG 《China's Refractories》 CAS 2024年第2期10-15,共6页
The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase d... The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase diagrams and equilibrium phases involving refractories in industrial process.In this study,the FactSage thermodynamic database relevant to ZrO_(2)-based refractories was reviewed and the application of the database to understanding the corrosion of continuous casting nozzle refractories in steelmaking was presented. 展开更多
关键词 thermodynamic database ZrO_(2)containing submerged entry nozzle continous casting
下载PDF
Experimental Investigation on Noise Suppression in Supersonic Jets from Convergent-Divergent Nozzles with Baffles
12
作者 Yoshiaki Miyazato Yong-Hun Kweon +5 位作者 Toshiyuki Aoki Mitsuharu Masuda Kwon-Hee Lee Heuy-Dong Kim Toshiaki Setoguchi Kazuyasu Matsuo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第3期260-263,269,共5页
The acoustic properties of supersonic jet noise from a convergent-divergent nozzle with a baffle have been studied experimentally over the range of nozzle pressure ratios from 2.0 to 8.0. Acoustic measurements were co... The acoustic properties of supersonic jet noise from a convergent-divergent nozzle with a baffle have been studied experimentally over the range of nozzle pressure ratios from 2.0 to 8.0. Acoustic measurements were conducted in a carefully designed anechoic room providing a free-field environment. A new approach for screech noise suppression by a cross-wire is proposed. Schlieren photographs were taken to visualize the shock wave patterns in the supersonic jet with and without the cross-wire. The effects of the baffle and the cross-wire on acoustic properties are discussed. It is shown that the baffle has little effect on the screech frequency for the underexpanded supersonic jet without the cross-wire. Also, the cross-wire introduced in supersonic jets is found to lead to a significant reduction in overall sound pressure level. 展开更多
关键词 超音速流动 噪声控制 实验研究 收敛-扩散喷管 流体力学 超音速喷射
原文传递
Prediction of atomization characteristics of pressure swirl nozzle with different structures 被引量:1
13
作者 Jinfan Liu Xin Feng +4 位作者 Hu Liang Weipeng Zhang Yuanyuan Hui Haohan Xu Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期171-184,共14页
The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment... The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment,10 nozzles with different structures are designed to comprehensively cover various geometric factors.In terms of simulation,steady-state simulation with less computational complexity is used to study the flow inside the nozzle.The results show that the diameter of the inlet and outlet,the direction of the inlet,the diameter of the swirl chamber,and the height of the swirl chamber all affect the atomization performance,and the diameter of the inlet and outlet has a greater impact.It is found that under the same flow rate and pressure,the geometric differences do have a significant impact on the atomization characteristics,such as spray angle and SMD(Sauter mean diameter).Specific nozzle structures can be customized according to the actual needs.Data analysis shows that the spray angle is related to the swirl number,and the SMD is related to turbulent kinetic energy.Through data fitting,the equations for predicting the spray angle and the SMD are obtained.The error range of the fitting equation for the prediction of spray angle and SMD is within 15% and 10% respectively.The prediction is expected to be used in engineering to estimate the spray performance at the beginning of a real project. 展开更多
关键词 Pressure swirl nozzle nozzle structure Numerical simulation Spray angle PREDICTION
下载PDF
Investigations of the effects of two typical jet crushing methods on the atomization and dust reduction performance of nozzles 被引量:2
14
作者 Han Han Hetang Wang +3 位作者 Qi Zhang Yunhe Du Haojie Wang Hui Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期92-106,共15页
Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control e... Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control efciency at the coal mining faces, the atomization characteristics and dust reduction performance of the two nozzles were quantitatively compared. Results of experiments show that, as water supply pressure increased, the atomization angle of the swirl pressure nozzle reaches a maximum of 62° at 6 MPa and then decreases, but its droplet size shows an opposite trend with a minimum of 41.7 μm. The water supply pressure helps to improve the droplet size and the atomization angle of the internal mixing air–liquid nozzle, while the air supply pressure has a suppressive efect for them. When the water supply pressure is 0.2 MPa and the air supply pressure reaches 0.4 MPa, the nozzle obtains the smallest droplet size which is 10% smaller than the swirl pressure nozzle. Combined with the dust reduction experimental results, when the water consumption at the working surface is not limited, using the swirl pressure nozzle will achieve a better dust reduction efect. However, the internal mixing air–liquid nozzle can achieve better and more economical dust reduction performance in working environments where water consumption is limited. 展开更多
关键词 Dust control Spray nozzle Atomization characteristics Dust reduction performance
下载PDF
Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process 被引量:2
15
作者 Jiahao Wang Peiyuan Ni +2 位作者 Chao Chen Mikael Ersson Ying Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期844-856,共13页
A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a... A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%. 展开更多
关键词 Ruhrstahl-Heraeus refining gas blowing nozzle angle circulation flow rate mixing time multiphase flow
下载PDF
Design and Fluid-Dynamic Analysis of a Flushing Nozzle for Drilling Applications
16
作者 Zhongshuai Chen Hongjian Ni +1 位作者 Xueliang Pei Yu Gao 《Fluid Dynamics & Materials Processing》 EI 2023年第12期2953-2963,共11页
The actuator is a key component of the creaming tool in drilling applications.Its jet performances determine the effective reaming efficiency.In this work,a new selective reaming tool is proposed and the RNG k-εturbu... The actuator is a key component of the creaming tool in drilling applications.Its jet performances determine the effective reaming efficiency.In this work,a new selective reaming tool is proposed and the RNG k-εturbulence model is used to calculate its internal and externalflowfields.In particular,special attention is paid to the design of theflushing nozzle.The results show that the jet originating from theflushing nozzle has a significant influence on rock cutting and blade cooling effects.In turn,the jet performances depend on geometric structure of the creaming actuator.In this framework,a conical-cylindrical nozzle with a diameter of 7 mm is initially considered as a basis to implement a strategy to optimize the structural parameters of the reaming actuator,and improve the related side tracking reconstruction technology. 展开更多
关键词 Reaming tool while drilling flowfluid characteristics flushing nozzle nozzle structure
下载PDF
Optimization of a Diesel Injector Nozzle
17
作者 Yaofei Zhang Guoxiang Li +4 位作者 Shuzhan Bai Ke Sun Guihua Wang Yujie Jia Zhengxian Fang 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2933-2951,共19页
Multiphase simulations based on the VOF(Volume of Fluid)approach,used in synergy with the cavitation Schnerr-Sauer method and the K-Epsilon turbulence model,have been conducted to study the behavior of an injector noz... Multiphase simulations based on the VOF(Volume of Fluid)approach,used in synergy with the cavitation Schnerr-Sauer method and the K-Epsilon turbulence model,have been conducted to study the behavior of an injector nozzle as a function of relevant structural parameters(such as the spray hole diameter and length).The related performances have been optimized in the framework of orthogonal experimental design and range analysis methods.As made evident by the results,as the spray hole diameter increases from 0.10 to 0.20 mm,the outlet massflow rate grows by 243.23%.A small diameter of the spray hole,however,has a beneficial effect in terms of cavitation suppression.Moreover,rounding the spray hole can effectively increase the outlet massflow rate and improve theflow characteristics while mitigating the cavitation phenomenon inside the spray hole.In particular,with the optimized nozzle design,the outlet massflow rate can be increased by 13.33%,while the fuel vapor volume is reduced by 33.53%,thereby,leading to significant improvements in terms offlow characteristics and cavitation control. 展开更多
关键词 nozzle numerical simulation structural parameter CAVITATION
下载PDF
Effect of Intake Conditions and Nozzle Geometry on Spray Characteristics of Group-Hole Nozzle
18
作者 Jianfeng Pan Jinpeng Hua +1 位作者 Jiaqi Yao Abiodun Oluwaleke Ojo 《Energy Engineering》 EI 2023年第7期1541-1562,共22页
The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of i... The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Therefore,in this study,an accurate spray model coupled with the internal cavitating flow was established and computational fluid dynamics(CFD)simulations were done to study the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Experimental data obtained using high-speed digital camera on the high-pressure common rail injection system was used to validate the numerical model.Effects of intake conditions(injection pressure and temperature)and nozzle geometry(orifice entrance curvature radius and nozzle length)on the flow and spray characteristics of the group-hole nozzle were studied numerically.The differences in Sauter mean diameter(SMD),penetration length and fuel evaporation mass between single-hole nozzle and group-hole nozzle under different nozzle geometry were also discussed.It was found that the atomization performance of the group-hole nozzle was better than that of the single-hole nozzle under same intake conditions,and the atomization effect of the short nozzle was better than that of the long nozzle.With increase in the orifice entrance curvature radius,the average velocity and turbulent kinetic energy of the fuel increased,which was conducive to improving the injection rate and flow coefficient of the nozzle.Meanwhile,the penetration length and SMD value rose,while evaporation mass dropped.When the ratio of the orifice entrance curvature radius(R)to the diameter of injection hole(D)was 0.12,the spray characteristics reached a constant state due to elimination of cavitation.Conclusions were made based on these.This study is expected to be a guide for the design of the group-hole nozzle. 展开更多
关键词 DIESEL spray characteristics group-hole nozzle coupling model
下载PDF
Spray Characteristics of Non-Circular Nozzle in Air-Assisted Injection System
19
作者 Lihua Ye Wenjing Liu +1 位作者 Jie Li Aiping Shi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期61-72,共12页
In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-... In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-0.6 MPa and the spray volume of 1000-5000 mL/h. Elliptical nozzle and triangular nozzle are classified as non-circular geometries. The spray cone angle was measured by processing the spray image captured by a CCD camera. The measured spray cone angles of the circular nozzles were analyzed, and the axis switching phenomenon of minor plane of elliptical nozzle was found during the test. Among the three shapes of nozzles, the elliptical nozzle had the largest spray cone angle, and the triangular nozzle had the smallest. The velocity field obtained depended on the PIV system. The results show that for axial velocity, elliptical orifice spray has greater kinetic energy and smaller droplet size under the same working parameters. Compared with the circular and elliptical nozzles, triangular orifice reached maximum spray velocity the fastest, but its velocity decay was the fastest. For radial velocity, away from the axis, the spray velocity of the elliptical orifice was less affected by the injection parameters, and the velocity was less than that of circular orifice and triangle orifice. Increasing air pressure will weaken radial propagation. The increase of liquid spraying rate had no remarkable effect on the increase of spraying rate. The results of particle size analysis show that the particle size of the non-circular orifice is reduced compared with that of the circular orifice, which promotes the breakup of droplets to a certain extent and enhances the atomization effect. 展开更多
关键词 non-circular nozzle air-assisted injection system PIV spray cone angle velocity field
下载PDF
Experimental Analysis of the Flow Characteristics of an Adjustable Critical-Flow Venturi Nozzle
20
作者 Chun Ye Jingjing Gao +4 位作者 Zhihui Wang Weibiao Zheng Yibei Wang Xingkai Zhang Ming Liu 《Fluid Dynamics & Materials Processing》 EI 2023年第3期754-765,共12页
The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effec... The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effect of a variation in the cone displacement and liquid content on the critical flow characteristics is examined in detail and it is shown that the former can be used to effectively adjust the critical flow rate.The critical pressure ratio of the considered nozzle is above 0.85,and the critical flow control deviation of the gas flow is within±3%.Liquid flow can reduce the gas critical mass flow rate accordingly,especially for the cases with larger liquid volume and lower inlet pressure.The set of results and conclusions provided are intended to support the optimization of steam injection techniques in the context of heavy oil recovery processes. 展开更多
关键词 Adjustable critical flow venturi nozzle critical pressure ratio critical mass flow rate gas-liquid two-phase critical flow
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部