This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combin...This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.展开更多
A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled...A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.展开更多
In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The non...In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective.展开更多
The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablesp...The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablespeed wind turbine(VSWT)driving a squirrel-cage induction generator(SCIG)connected to a grid.A new maximum power point tracking(MPPT)approach is proposed based on the extremum seeking control principles under the assumption that the wind turbine model and its parameters are poorly known.The aim is to drive the average position of the operation point close to optimality.Here the wind turbulence is used as search disturbance instead of inducing new sinusoidal search signals.The discrete Fourier transform(DFT)process of some available measures estimates the distance of operation point to optimality.The effectiveness of the proposed MPPT approach is validated under different operation conditions by numerical simulations in MATLAB/SIMULINK.The simulation results prove that the new approach can effectively suppress the vibration of system and enhance the dynamic performance of system.展开更多
In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence i...In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results.展开更多
In this paper, we try to use the entransy theory to analyze the heat–work conversion systems with inner irreversible thermodynamic cycles. First, the inner irreversible thermodynamic cycles are analyzed. The influenc...In this paper, we try to use the entransy theory to analyze the heat–work conversion systems with inner irreversible thermodynamic cycles. First, the inner irreversible thermodynamic cycles are analyzed. The influences of different inner irreversible factors on entransy loss are discussed. We find that the concept of entransy loss can be used to analyze the inner irreversible thermodynamic cycles. Then, we analyze the common heat–work conversion systems with inner irreversible thermodynamic cycles. As an example, the heat–work conversion system in which the working fluid of the thermodynamic cycles is heated and cooled by streams is analyzed. Our analyses show that larger entransy loss leads to larger output work when the total heat flow from the high temperature heat source and the corresponding equivalent temperature are fixed.Some numerical cases are presented, and the results verify the theoretical analyses. On the other hand, it is also found that larger entransy loss does not always lead to larger output work when the preconditions are not satisfied.展开更多
A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydrauli...A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.展开更多
Fieldbus, industrial Ethernet that is simple, reliable, economical, and practical, is widely used in Wind Energy Conversion Systems(WECSs). These techniques belong to the field of networked control systems. Network em...Fieldbus, industrial Ethernet that is simple, reliable, economical, and practical, is widely used in Wind Energy Conversion Systems(WECSs). These techniques belong to the field of networked control systems. Network embedding to Wind Energy Conversion Systems brings many new challenges. Implementing a control system over a communication network causes inevitable time delays that may degrade performance and can even cause instability. This work addresses challenges related to the reliable control of wind energy conversion systems, based on the theoretical framework of networked control systems. A type of WECS with network-induced delay and packet dropout is modeled and adjustable deadbands are explored as a solution to reduce network traffic in WECSs. A method to study the reliable control of WECSs is presented, which takes into account system response as well as the network environment. After detailed theoretical analysis, simulation results are provided, which further demonstrate the feasibility of the proposed scheme.展开更多
The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-band...The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-bandwidth performance was achieved by optimizing the analog circuits,and a sufficient effective number of bits(ENOB)performance guaranteed using the perfect reconstruction algorithm for mismatch error correction.The proposed system was verified by tests,and the results indicated that a-3 dB bandwidth of 6 GHz and the ENOB performance of 8.7 bits at 1 GHz and 7.6 bits at6 GHz were successfully achieved.展开更多
This paper proposes a new system configuration for integrating a compressed air energy storage system with a conventional wind turbine. The proposed system recycles the mechanical spillage of blades and stores it for ...This paper proposes a new system configuration for integrating a compressed air energy storage system with a conventional wind turbine. The proposed system recycles the mechanical spillage of blades and stores it for later electricity generation with assistance from a rotary vane machine. The configuration and operational policy is explained, and a comparative case study shows that the proposed system recovers investment costs through savings on electricity procurement and revenue through power export.展开更多
Objective To report a protocol using biotin-labelled PrP protein in cell free conversion assay instead of isotope. Methods A hamster PrP protein (HaPrP) was expressed in E. coli and purified with HIS-tag affinity ch...Objective To report a protocol using biotin-labelled PrP protein in cell free conversion assay instead of isotope. Methods A hamster PrP protein (HaPrP) was expressed in E. coli and purified with HIS-tag affinity chromatograph. After being labelled with biotin, HaPrP was mixed with PrP^sen preparation from scrapie strain 263K. Results Protease-resistant bands were detected after four-day incubation. Conclusion The new conversion model provides a reliable, easily handling, and environment-friendly method for studies of prion and transmissible spongiform encephalopathies.展开更多
Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attenti...Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attention of researchers to their widely distributed energy source due to their simple structure and low cost. The most well-known direct conversion systems presently in use include the Archimedes Wave Swing (AWS) and Power Buoy (PB). In this paper, these two systems were simulated in the same conditions and their behaviors were studied in different wave conditions. In order to verify the simulations, results of the generator of the finite element computations were followed. An attempt was made to determine the merits and drawbacks of each method under different wave conditions by comparing the performance of the two systems. The wave conditions suitable for each system were specified.展开更多
In this paper, a model of a variable speed wind turbine using a permanent magnet synchronous generator (PMSG) is presented and the control schemes are proposed. The model presents the aerodynamic part of the wind turb...In this paper, a model of a variable speed wind turbine using a permanent magnet synchronous generator (PMSG) is presented and the control schemes are proposed. The model presents the aerodynamic part of the wind turbine, the mechanic and the electric parts. Simulations have been conducted with Matlab/Simulink to validate the model and the proposed control schemes.展开更多
2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor re...2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor required for conversion. In this paper, we introduce a distributed 2D-to-3D video conversion system that includes a 2D-to-3D video conversion module, architecture of the parallel computation on the cloud, and 3D video coding in the system. The system enables cooperation among multiple users in the simultaneous completion of their conversion tasks so that the conversion efficiency is greatly promoted. In the experiments, we evaluate the system based on criteria related to both time consumption and video coding performance.展开更多
In the present paper, we investigate the instability, adiabaticity, and controlling effects of external fields for a dark state in a homonuclear atom-tetramer conversion that is implemented by a generalized stimulated...In the present paper, we investigate the instability, adiabaticity, and controlling effects of external fields for a dark state in a homonuclear atom-tetramer conversion that is implemented by a generalized stimulated Raman adiabatic passage. We analytically obtain the regions for the appearance of dynamical instability and study the adiabatic evolution by a newly defined adiabatic fidelity. Moreover, the effects of the external field parameters and the spontaneous emissions on the conversion efficiency are also investigated.展开更多
A direct-drive wave energy conversion system based on a three-phase permanent magnet tubular linear generator (PMTLG) and a heaving buoy is proposed to convert wave energy into electrical energy. Sufficient experime...A direct-drive wave energy conversion system based on a three-phase permanent magnet tubular linear generator (PMTLG) and a heaving buoy is proposed to convert wave energy into electrical energy. Sufficient experimental methods are adopted to compare the computer simulations, the validity of which is verified by the experiment results from a wave tank laboratory. In the experiment, the motion curves of heaving buoy are with small fluctuations, mainly caused by the PMTLG's detent force. For the reduction of these small fluctuations and a maximum operational efficiency of the direct-drive wave energy conversion system, the PMTLG's detent force minimization technique and the heaving buoy optimization will be discussed. It is discovered that the operational efficiency of the direct-drive wave energy conversion system increases dramatically after optimization. The experiment and optimization results will provide useful reference for the future research on ocean wave energy conversion system.展开更多
This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using A...This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible.展开更多
Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders....Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors––NeuroD1, Ascl1, and Dlx2––in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore,we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4(astrocyte endfeet signal), CX43(gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into preexisting neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain.展开更多
Asymmetrical voltage swells during recovery of a short-circuit fault lead to fluctuations in the dc-link voltage of a renewable energy conversion system(RECS),and may induce reversed power flow and even trip the RECS....Asymmetrical voltage swells during recovery of a short-circuit fault lead to fluctuations in the dc-link voltage of a renewable energy conversion system(RECS),and may induce reversed power flow and even trip the RECS. This paper studies characteristics of both typical causes resulting in the practical asymmetrical voltage swell and the voltage at the point of common coupling(PCC)during the fault recovery. As analyzed, the fault recovery process can be divided into two continuous periods in which different control strategies have to be applied. Also protective measures are necessary in the transient period of the process. Additionally, the asymmetrical high-voltage ride-through capability and the controllability criteria of the RECS are analyzed based on eliminating the fluctuations. Furthermore, an asymmetrical control scheme is proposed to maintain the controllability of the RECS and ride through the entire recovery process. As verified by the simulation, the scheme can promise the RECS to deal with the practical fault recovery period and mitigate the dc-link voltage fluctuations, which improves the reliability of the RECS and the power system.展开更多
Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivale...Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.展开更多
文摘This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.
基金Project supported by Delta Power Electronic Science and Education Development (Grant No.DRES2007002)
文摘A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.
基金supported by Ministry of Science and Technology of Peoples Republic of China(No.2019YFE0104800).
文摘In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective.
基金Supported by the National Basic Research Program("973" Program)(2007CB210303)the Research Funding of Nanjing University of Aeronautics and Astronautrics(NP2011011)
文摘The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablespeed wind turbine(VSWT)driving a squirrel-cage induction generator(SCIG)connected to a grid.A new maximum power point tracking(MPPT)approach is proposed based on the extremum seeking control principles under the assumption that the wind turbine model and its parameters are poorly known.The aim is to drive the average position of the operation point close to optimality.Here the wind turbulence is used as search disturbance instead of inducing new sinusoidal search signals.The discrete Fourier transform(DFT)process of some available measures estimates the distance of operation point to optimality.The effectiveness of the proposed MPPT approach is validated under different operation conditions by numerical simulations in MATLAB/SIMULINK.The simulation results prove that the new approach can effectively suppress the vibration of system and enhance the dynamic performance of system.
文摘In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51376101 and 51356001)
文摘In this paper, we try to use the entransy theory to analyze the heat–work conversion systems with inner irreversible thermodynamic cycles. First, the inner irreversible thermodynamic cycles are analyzed. The influences of different inner irreversible factors on entransy loss are discussed. We find that the concept of entransy loss can be used to analyze the inner irreversible thermodynamic cycles. Then, we analyze the common heat–work conversion systems with inner irreversible thermodynamic cycles. As an example, the heat–work conversion system in which the working fluid of the thermodynamic cycles is heated and cooled by streams is analyzed. Our analyses show that larger entransy loss leads to larger output work when the total heat flow from the high temperature heat source and the corresponding equivalent temperature are fixed.Some numerical cases are presented, and the results verify the theoretical analyses. On the other hand, it is also found that larger entransy loss does not always lead to larger output work when the preconditions are not satisfied.
基金supported by Marine Renewable Energy Funds Projects(Grant Nos.GHME2010GC01 and GHME2011BL06)
文摘A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.
基金supported by National Natural Science Foundation of China Research on the Formation Mechanism and Coupled Evolution of Complex Terrain and Wind Turbine Eddy Current, No. U1865101
文摘Fieldbus, industrial Ethernet that is simple, reliable, economical, and practical, is widely used in Wind Energy Conversion Systems(WECSs). These techniques belong to the field of networked control systems. Network embedding to Wind Energy Conversion Systems brings many new challenges. Implementing a control system over a communication network causes inevitable time delays that may degrade performance and can even cause instability. This work addresses challenges related to the reliable control of wind energy conversion systems, based on the theoretical framework of networked control systems. A type of WECS with network-induced delay and packet dropout is modeled and adjustable deadbands are explored as a solution to reduce network traffic in WECSs. A method to study the reliable control of WECSs is presented, which takes into account system response as well as the network environment. After detailed theoretical analysis, simulation results are provided, which further demonstrate the feasibility of the proposed scheme.
基金supported in part by the National Natural Science Foundation of China(No.11675173)the Youth Innovation Promotion Association CASthe CAS Center for Excellence in Particle Physics(CCEPP)。
文摘The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-bandwidth performance was achieved by optimizing the analog circuits,and a sufficient effective number of bits(ENOB)performance guaranteed using the perfect reconstruction algorithm for mismatch error correction.The proposed system was verified by tests,and the results indicated that a-3 dB bandwidth of 6 GHz and the ENOB performance of 8.7 bits at 1 GHz and 7.6 bits at6 GHz were successfully achieved.
文摘This paper proposes a new system configuration for integrating a compressed air energy storage system with a conventional wind turbine. The proposed system recycles the mechanical spillage of blades and stores it for later electricity generation with assistance from a rotary vane machine. The configuration and operational policy is explained, and a comparative case study shows that the proposed system recovers investment costs through savings on electricity procurement and revenue through power export.
基金This work was supported by National Natural Science Foundation of China 30070038 and 30130070, National High-Tech Research and Development Program of China (863 Project) 2001AA215391, and EU Project QLRT 2000 01441.
文摘Objective To report a protocol using biotin-labelled PrP protein in cell free conversion assay instead of isotope. Methods A hamster PrP protein (HaPrP) was expressed in E. coli and purified with HIS-tag affinity chromatograph. After being labelled with biotin, HaPrP was mixed with PrP^sen preparation from scrapie strain 263K. Results Protease-resistant bands were detected after four-day incubation. Conclusion The new conversion model provides a reliable, easily handling, and environment-friendly method for studies of prion and transmissible spongiform encephalopathies.
文摘Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attention of researchers to their widely distributed energy source due to their simple structure and low cost. The most well-known direct conversion systems presently in use include the Archimedes Wave Swing (AWS) and Power Buoy (PB). In this paper, these two systems were simulated in the same conditions and their behaviors were studied in different wave conditions. In order to verify the simulations, results of the generator of the finite element computations were followed. An attempt was made to determine the merits and drawbacks of each method under different wave conditions by comparing the performance of the two systems. The wave conditions suitable for each system were specified.
文摘In this paper, a model of a variable speed wind turbine using a permanent magnet synchronous generator (PMSG) is presented and the control schemes are proposed. The model presents the aerodynamic part of the wind turbine, the mechanic and the electric parts. Simulations have been conducted with Matlab/Simulink to validate the model and the proposed control schemes.
基金supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2009CB320904the National Natural Science Foundation of China under Grants No. 61121002, No. 61231010, 91120004the Key Projects in the National Science and Technology Pillar Program under Grant No. 2011BAH08B03
文摘2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor required for conversion. In this paper, we introduce a distributed 2D-to-3D video conversion system that includes a 2D-to-3D video conversion module, architecture of the parallel computation on the cloud, and 3D video coding in the system. The system enables cooperation among multiple users in the simultaneous completion of their conversion tasks so that the conversion efficiency is greatly promoted. In the experiments, we evaluate the system based on criteria related to both time consumption and video coding performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11005055,11075020,and 11204117)the National Fundamental Research Programme of China(Grant No.2011CB921503)+1 种基金the Ph.D.Programs Foundation of Liaoning Provincial Science and Technology Bureau(GrantNo.201103778)the Higher School Excellent Researcher Award Program from the Educational Department of Liaoning Province of China(GrantNo.LJQ2011005)
文摘In the present paper, we investigate the instability, adiabaticity, and controlling effects of external fields for a dark state in a homonuclear atom-tetramer conversion that is implemented by a generalized stimulated Raman adiabatic passage. We analytically obtain the regions for the appearance of dynamical instability and study the adiabatic evolution by a newly defined adiabatic fidelity. Moreover, the effects of the external field parameters and the spontaneous emissions on the conversion efficiency are also investigated.
基金The National Natural Science Foundation of China under contract No.41076054the Special Foundation for State Oceanic Administration of China under contract No.GHME2011GD02the Scientific Research Foundation of Graduate School of Southeast University of China under contract No.YBJJ1416
文摘A direct-drive wave energy conversion system based on a three-phase permanent magnet tubular linear generator (PMTLG) and a heaving buoy is proposed to convert wave energy into electrical energy. Sufficient experimental methods are adopted to compare the computer simulations, the validity of which is verified by the experiment results from a wave tank laboratory. In the experiment, the motion curves of heaving buoy are with small fluctuations, mainly caused by the PMTLG's detent force. For the reduction of these small fluctuations and a maximum operational efficiency of the direct-drive wave energy conversion system, the PMTLG's detent force minimization technique and the heaving buoy optimization will be discussed. It is discovered that the operational efficiency of the direct-drive wave energy conversion system increases dramatically after optimization. The experiment and optimization results will provide useful reference for the future research on ocean wave energy conversion system.
基金Supported by the National Natural Science Foundation of China (No. 60872105)the Program for Science & Technology Innovative Research Team of Qing Lan Project in Higher Educational Institutions of Jiangsuthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible.
基金supported by the Key Project of Guangzhou City,No.202206060002Science and Technology Project of Guangdong Province,No.2018B030332001Guangdong Provincial Pearl River Project,No.2021ZT09Y552 (all to GC)。
文摘Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors––NeuroD1, Ascl1, and Dlx2––in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore,we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4(astrocyte endfeet signal), CX43(gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into preexisting neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain.
基金supported by National Natural Science Foundation of China(NSFC)(No.U1510208,No.61273045,No.51361135705)National High Technology Research and Development Program of China(No.2012AA050217)Grants from Beijing Higher Education Young Elite Teacher Project
文摘Asymmetrical voltage swells during recovery of a short-circuit fault lead to fluctuations in the dc-link voltage of a renewable energy conversion system(RECS),and may induce reversed power flow and even trip the RECS. This paper studies characteristics of both typical causes resulting in the practical asymmetrical voltage swell and the voltage at the point of common coupling(PCC)during the fault recovery. As analyzed, the fault recovery process can be divided into two continuous periods in which different control strategies have to be applied. Also protective measures are necessary in the transient period of the process. Additionally, the asymmetrical high-voltage ride-through capability and the controllability criteria of the RECS are analyzed based on eliminating the fluctuations. Furthermore, an asymmetrical control scheme is proposed to maintain the controllability of the RECS and ride through the entire recovery process. As verified by the simulation, the scheme can promise the RECS to deal with the practical fault recovery period and mitigate the dc-link voltage fluctuations, which improves the reliability of the RECS and the power system.
文摘Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.