This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
We consider the following quasiconvex functional I(u)=∫ Gf(x,δu,D mu) d x where u is a vector valued function in W m,p (G),m>1 and p>2. The partial C m,a —regularity is proved fo...We consider the following quasiconvex functional I(u)=∫ Gf(x,δu,D mu) d x where u is a vector valued function in W m,p (G),m>1 and p>2. The partial C m,a —regularity is proved for minimizers of I(u) under weaker conditions.展开更多
We investigate some new subclasses of analytic functions of Janowski type of complex order.We also study inclusion properties,distortion theorems,coefficient bounds and radius of convexity of the functions.Moreover,an...We investigate some new subclasses of analytic functions of Janowski type of complex order.We also study inclusion properties,distortion theorems,coefficient bounds and radius of convexity of the functions.Moreover,analytic properties of these classes under certain integral operator are also discussed.Our findings are more comprehensive than the existing results in the literature.展开更多
In this paper, we obtain the convexity of new general integral operator on some classes of k-uniformly p-valent a-convex functions of complex order. These results extend some known theorems.
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work ...Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation.展开更多
Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ ...Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.展开更多
In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of t...In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of the coefficients for functions belong to the subclasses.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are n...In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are nonconvex functions and include the biconvex function, convex functions, and <i>k</i>-convex as special cases. We study some properties of the higher order strongly biconvex functions. Several parallelogram laws for inner product spaces are obtained as novel applications of the higher order strongly biconvex affine functions. It is shown that the minimum of generalized biconvex functions on the <i>k</i>-biconvex sets can be characterized by a class of equilibrium problems, which is called the higher order strongly biequilibrium problems. Using the auxiliary technique involving the Bregman functions, several new inertial type methods for solving the higher order strongly biequilibrium problem are suggested and investigated. Convergence analysis of the proposed methods is considered under suitable conditions. Several important special cases are obtained as novel applications of the derived results. Some open problems are also suggested for future research.展开更多
In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are usi...In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.展开更多
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con...This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.展开更多
The rnemmorphic functions of positive order(both finite positive order and infinite order) are discussed.First,the precise order and type function are given by using the characteristic function.Then some singular dire...The rnemmorphic functions of positive order(both finite positive order and infinite order) are discussed.First,the precise order and type function are given by using the characteristic function.Then some singular directions are defined and their existence is proved.展开更多
Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))...Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))-<1+Az/1+Bz for z∈E.In this paper we obtain incluion relations,distortion properties and estimates of |αn+2-λα^2n+1| for the class Jn(α,A,B),where λ is complex.展开更多
In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequa...In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.展开更多
The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important re...The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.展开更多
In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘We consider the following quasiconvex functional I(u)=∫ Gf(x,δu,D mu) d x where u is a vector valued function in W m,p (G),m>1 and p>2. The partial C m,a —regularity is proved for minimizers of I(u) under weaker conditions.
文摘We investigate some new subclasses of analytic functions of Janowski type of complex order.We also study inclusion properties,distortion theorems,coefficient bounds and radius of convexity of the functions.Moreover,analytic properties of these classes under certain integral operator are also discussed.Our findings are more comprehensive than the existing results in the literature.
基金Foundation item: Supported by the Natural Science Foundation of Inner Mongolia(2009MS0113) Sup- ported by the Higher School Research Foundation of Inner Mongolia(NJzy08150)
文摘In this paper, we obtain the convexity of new general integral operator on some classes of k-uniformly p-valent a-convex functions of complex order. These results extend some known theorems.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
基金financial support for this work provided by Eski sehir Technical University Scientific Research Projects Unit with Grant Number 20DRP059support provided by the Turkish Ministry of Science,Industry and Technology under the SANTEZ Project 0286.STZ.2013±2。
文摘Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11461021)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1014)
文摘Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.
文摘In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of the coefficients for functions belong to the subclasses.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are nonconvex functions and include the biconvex function, convex functions, and <i>k</i>-convex as special cases. We study some properties of the higher order strongly biconvex functions. Several parallelogram laws for inner product spaces are obtained as novel applications of the higher order strongly biconvex affine functions. It is shown that the minimum of generalized biconvex functions on the <i>k</i>-biconvex sets can be characterized by a class of equilibrium problems, which is called the higher order strongly biequilibrium problems. Using the auxiliary technique involving the Bregman functions, several new inertial type methods for solving the higher order strongly biequilibrium problem are suggested and investigated. Convergence analysis of the proposed methods is considered under suitable conditions. Several important special cases are obtained as novel applications of the derived results. Some open problems are also suggested for future research.
文摘In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.
文摘This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.
文摘The rnemmorphic functions of positive order(both finite positive order and infinite order) are discussed.First,the precise order and type function are given by using the characteristic function.Then some singular directions are defined and their existence is proved.
文摘Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))-<1+Az/1+Bz for z∈E.In this paper we obtain incluion relations,distortion properties and estimates of |αn+2-λα^2n+1| for the class Jn(α,A,B),where λ is complex.
基金supported by NSFC (60850005)NSF of Zhejiang Province(D7080080, Y7080185, Y607128)
文摘In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.
文摘The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.
文摘In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.