In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an a...In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an almost fixed point theorem for upper [resp., lower] semicontinuous multimaps in locally G-convex spaces, and then give a fixed point theorem for upper semicontinuous multimap with closed Γ-convex values.展开更多
We obtain characterizations of nearly strong convexity and nearly very convexity by using the dual concept of S and WS points,related to the so-called Rolewicz’s property(α).We give a characterization of those point...We obtain characterizations of nearly strong convexity and nearly very convexity by using the dual concept of S and WS points,related to the so-called Rolewicz’s property(α).We give a characterization of those points in terms of continuity properties of the identity mapping.The connection between these two geometric properties is established,and finally an application to approximative compactness is given.展开更多
A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for q...A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
Some KKM theorems and coincidence theorems involving admissible set-valued mappings and the set-valued mappings with compactly local intersection property are proved in L-convex: spaces. As applications, some new fixe...Some KKM theorems and coincidence theorems involving admissible set-valued mappings and the set-valued mappings with compactly local intersection property are proved in L-convex: spaces. As applications, some new fixed point theorems are obtained in L-convex spaces. These theorems improve and generalize many important known results in recent literature.展开更多
By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize ...By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are prov...By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are proved in generalized convex spaces without linear structure. These theorems improve and generalize a number of important results in recent literature.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.Th...A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.展开更多
By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping and a family of set-valued mappings defined on the product G-convex spaces are proved. Theorems...By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping and a family of set-valued mappings defined on the product G-convex spaces are proved. Theorems of this paper improve, unify and generalize many important coincidence theorems and collectively fixed point theorems in recent literature.展开更多
A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several exist...A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.展开更多
A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several exist...A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.展开更多
In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions...In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions from the set up of a normed space to the case of a Hausdorff locally convex space.展开更多
By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of nonc...By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of noncompact G-convex spaces are proved. As applications, some nonempty intersetion theorems of Ky Fan type for a family of subsets of the product space of G convex spaces are proved; An existence theorem of solutions for a system of nonlinear inequalities is given in G-convex spaces and some equilibrium existence of abstract economies are also obtained in G convex spaces. Our theorems theorems of improve, unify and generalized many important known results in recent literature.展开更多
In this paper, a better admissible class B+ is introduced and a new fixed point theorem for better admissible multimap is proved on abstract convex spaces. As a consequence, we deduce a new fixed point theorem on abs...In this paper, a better admissible class B+ is introduced and a new fixed point theorem for better admissible multimap is proved on abstract convex spaces. As a consequence, we deduce a new fixed point theorem on abstract convex Ф-spaces. Our main results generalize some recent work due to Lassonde, Kakutani, Browder, and Park展开更多
A class Ф of 5-dimensional functions was introduced and an existence and uniqueness of common fixed points for a family of non-self mappings satisfying a Фi- quasi-contractive condition and a certain boundary condit...A class Ф of 5-dimensional functions was introduced and an existence and uniqueness of common fixed points for a family of non-self mappings satisfying a Фi- quasi-contractive condition and a certain boundary condition was given on complete metrically convex metric spaces, and from which, more general unique common fixed point theorems were obtained. Our main results generalize and improve many same type common fixed point theorems in references.展开更多
In this paper, another form of KKM type theorem on generalized convex spaces is obtained and the problems of von Neumann-Fan type sup inf sup inequalities and variational inequalities are discussed for their applicati...In this paper, another form of KKM type theorem on generalized convex spaces is obtained and the problems of von Neumann-Fan type sup inf sup inequalities and variational inequalities are discussed for their applications.The main results improve and generalize the corresponding results in previous papers.展开更多
Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can...Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can find a f 0∈E′ and extract subsequences {f n i } and {x n j } such that {f n i } converges to f 0 on {x n j } uniformly. If (E,γ) is metrizable,then we can show that the converse is also valid.展开更多
Using a fixed point theorem by Kuo, Jeng and Huang, we obtain in G-convex spaces a very general intersection theorem concerning the values of three maps. From this result we derive successively alternative theorems co...Using a fixed point theorem by Kuo, Jeng and Huang, we obtain in G-convex spaces a very general intersection theorem concerning the values of three maps. From this result we derive successively alternative theorems concerning maximal elements, analytic alternatives and minimax inequalities.展开更多
文摘In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an almost fixed point theorem for upper [resp., lower] semicontinuous multimaps in locally G-convex spaces, and then give a fixed point theorem for upper semicontinuous multimap with closed Γ-convex values.
基金supported in part by the National Natural Science Foundation of China (11671252,11771248)supported by Proyecto MTM2014-57838-C2-2-P (Spain)the Universitat Politècnica de València (Spain)
文摘We obtain characterizations of nearly strong convexity and nearly very convexity by using the dual concept of S and WS points,related to the so-called Rolewicz’s property(α).We give a characterization of those points in terms of continuity properties of the identity mapping.The connection between these two geometric properties is established,and finally an application to approximative compactness is given.
文摘A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.
基金the NNSF of China(19871059)and the NSF of Education Department of Sichuan Province([2000]25)
文摘Some KKM theorems and coincidence theorems involving admissible set-valued mappings and the set-valued mappings with compactly local intersection property are proved in L-convex: spaces. As applications, some new fixed point theorems are obtained in L-convex spaces. These theorems improve and generalize many important known results in recent literature.
文摘By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
文摘By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are proved in generalized convex spaces without linear structure. These theorems improve and generalize a number of important results in recent literature.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金Supported by the NSF of China (10071063 and 10471114)
文摘A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.
基金This project is supported by the NNSF of China (19871059) and the Natural Science Foundation of Sichuan Education Department (2003A081).
文摘By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping and a family of set-valued mappings defined on the product G-convex spaces are proved. Theorems of this paper improve, unify and generalize many important coincidence theorems and collectively fixed point theorems in recent literature.
文摘A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.
文摘A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.
文摘In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions from the set up of a normed space to the case of a Hausdorff locally convex space.
文摘By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of noncompact G-convex spaces are proved. As applications, some nonempty intersetion theorems of Ky Fan type for a family of subsets of the product space of G convex spaces are proved; An existence theorem of solutions for a system of nonlinear inequalities is given in G-convex spaces and some equilibrium existence of abstract economies are also obtained in G convex spaces. Our theorems theorems of improve, unify and generalized many important known results in recent literature.
基金Supported by the National Science Foundation of China(Grant 10626025)Research Grant of Chongqing Key Laboratory of Operations Research and System Engineering
文摘In this paper, a better admissible class B+ is introduced and a new fixed point theorem for better admissible multimap is proved on abstract convex spaces. As a consequence, we deduce a new fixed point theorem on abstract convex Ф-spaces. Our main results generalize some recent work due to Lassonde, Kakutani, Browder, and Park
基金supported by the National Natural Science Foundation of China(No.11361064)
文摘A class Ф of 5-dimensional functions was introduced and an existence and uniqueness of common fixed points for a family of non-self mappings satisfying a Фi- quasi-contractive condition and a certain boundary condition was given on complete metrically convex metric spaces, and from which, more general unique common fixed point theorems were obtained. Our main results generalize and improve many same type common fixed point theorems in references.
文摘In this paper, another form of KKM type theorem on generalized convex spaces is obtained and the problems of von Neumann-Fan type sup inf sup inequalities and variational inequalities are discussed for their applications.The main results improve and generalize the corresponding results in previous papers.
文摘Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can find a f 0∈E′ and extract subsequences {f n i } and {x n j } such that {f n i } converges to f 0 on {x n j } uniformly. If (E,γ) is metrizable,then we can show that the converse is also valid.
文摘Using a fixed point theorem by Kuo, Jeng and Huang, we obtain in G-convex spaces a very general intersection theorem concerning the values of three maps. From this result we derive successively alternative theorems concerning maximal elements, analytic alternatives and minimax inequalities.