We propose the transverse-mode control of vertical-cavity surface-emitting lasers (VCSELs) with a convex mirror. A possibility of improvements on single-mode output power and higher-order mode suppression is presented...We propose the transverse-mode control of vertical-cavity surface-emitting lasers (VCSELs) with a convex mirror. A possibility of improvements on single-mode output power and higher-order mode suppression is presented by optimizing a convex mirror.展开更多
A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromag...A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film(MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror(MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.展开更多
文摘We propose the transverse-mode control of vertical-cavity surface-emitting lasers (VCSELs) with a convex mirror. A possibility of improvements on single-mode output power and higher-order mode suppression is presented by optimizing a convex mirror.
基金supported by Shanghai Municipal Natural Science Foundation(No.15ZR1415800)the Innovation Program of Shanghai Municipal Education Commission(No.14ZZ092)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film(MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror(MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.