Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in auto-matic cavity design bas...Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in auto-matic cavity design based on the my-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.展开更多
On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the c...On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.展开更多
It is critical to identify core/cavity and undercut surfaces of molds in parting line generation. A new Ray-Testing approach is presented to detect these surfaces by identifying the visibility of surfaces. A simple, d...It is critical to identify core/cavity and undercut surfaces of molds in parting line generation. A new Ray-Testing approach is presented to detect these surfaces by identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. Case studies show that the approach is practical and valuable in automated parting line generation.展开更多
In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult ras...In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.展开更多
A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The alumi...A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The aluminum alloy impeller was designated as the object to be processed and the boundary conditions which met the actual machining were set. Through the solution, the physical quantities such as the three-way cutting force, the tool temperature, and the tool stress were obtained, and the calculation of the elastic deformation of the thin-walled blade of the free-form surface at the contact points between the tool and the workpiece was realized. The elastic deformation law of the thin-walled blade was then predicted. The results show that the maximum deviation between the predicted value and the actual measured machining value of the elastic deformation was 26.055 μm; the minimum deviation was 2.011 μm, with the average deviation being 10.154 μm. This shows that the prediction is in close agreement with the actual result.展开更多
During deep drawing process,the material parameters of blank have a significant effect on the quality of the drawn part and the determination of process parameters. Here,a 3D finite element model is developed for the ...During deep drawing process,the material parameters of blank have a significant effect on the quality of the drawn part and the determination of process parameters. Here,a 3D finite element model is developed for the deep drawing process of a thin-walled hemispheric surface part. Then the influences of material parameters including hardening exponent n,yield stress σs and elastic modulus E on the process are investigated by simulation. The results show that the effects of n and σs on punch force,thickness variation and equivalent strain are more notable. The maximum equivalent plastic strain occurs outside the die corner. However,when the value of n is 0.03 or σs is smaller than 120 MPa,higher equivalent plastic strain occurs at ball top.展开更多
Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-ai...Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.展开更多
2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气...2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气候指数、美国国家环境预报中心/国家大气科学研究中心(National Center for Enviromental Prediction/National Center for Atmospheric Research,NCEP/NCAR)逐日再分析资料和美国国家海洋和大气管理局(National Oceanic and Atmospheric Admin⁃istration,NOAA)逐月海表温度资料,分析2022年7月内蒙古中西部地区涝-旱转折事件的成因。结果表明:(1)2022年7月内蒙古中西部地区降水量严重偏少,为该地区1991年以来同期降水最少、气象干旱最为严重。(2)7月1—11日降水相对偏多,冷空气路径偏北且强度较弱,西太平洋副热带高压强度偏弱,位置偏北、偏西,冷暖空气在内蒙古中西部地区交绥,加之这一时段高空西风急流位置偏北,内蒙古中西部位于急流轴以南,有利于高层辐散和上升运动发展。7月12—31日降水明显偏少,环流经向度加大,冷空气活动路径偏南且强度增强,西太平洋副热带高压强度偏强且位置明显偏南,不利于水汽输送,加之高空西风急流位置偏南,内蒙古中西部位于急流轴以北,不利于高层辐散和上升运动发展;7月中旬后期至下旬高空西风急流南北向扰动偏强有利于激发东亚—西北太平洋经向遥相关波列,使得西太平洋副热带高压位置偏南从而导致降水偏少。(3)日本海至北太平洋西北部地区的海温异常是影响内蒙古中西部地区降水多寡的重要外强迫信号之一。2022年7月该海区海温异常偏高,其上空激发的气旋式环流减弱了南方暖湿水汽的经向输送,是导致内蒙古中西部降水由涝转旱的原因之一。展开更多
文摘Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in auto-matic cavity design based on the my-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.
文摘On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.
文摘It is critical to identify core/cavity and undercut surfaces of molds in parting line generation. A new Ray-Testing approach is presented to detect these surfaces by identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. Case studies show that the approach is practical and valuable in automated parting line generation.
文摘In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.
基金Project(U1530138)supported by the National Natural Science Foundation of ChinaProject(A1-8903-17-0103)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The aluminum alloy impeller was designated as the object to be processed and the boundary conditions which met the actual machining were set. Through the solution, the physical quantities such as the three-way cutting force, the tool temperature, and the tool stress were obtained, and the calculation of the elastic deformation of the thin-walled blade of the free-form surface at the contact points between the tool and the workpiece was realized. The elastic deformation law of the thin-walled blade was then predicted. The results show that the maximum deviation between the predicted value and the actual measured machining value of the elastic deformation was 26.055 μm; the minimum deviation was 2.011 μm, with the average deviation being 10.154 μm. This shows that the prediction is in close agreement with the actual result.
基金Project(2007CB613802) supported by the National Basic Research Program of ChinaProject(50805121) supported by the National Natural Science Foundation of China
文摘During deep drawing process,the material parameters of blank have a significant effect on the quality of the drawn part and the determination of process parameters. Here,a 3D finite element model is developed for the deep drawing process of a thin-walled hemispheric surface part. Then the influences of material parameters including hardening exponent n,yield stress σs and elastic modulus E on the process are investigated by simulation. The results show that the effects of n and σs on punch force,thickness variation and equivalent strain are more notable. The maximum equivalent plastic strain occurs outside the die corner. However,when the value of n is 0.03 or σs is smaller than 120 MPa,higher equivalent plastic strain occurs at ball top.
基金supported by Key Program of National Natural Science Foundation of China (Grant No. 50835001) General Program of National Natural Science Foundation of China (Grant No. 50775023)Program for New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-08-081)
文摘Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.
文摘2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气候指数、美国国家环境预报中心/国家大气科学研究中心(National Center for Enviromental Prediction/National Center for Atmospheric Research,NCEP/NCAR)逐日再分析资料和美国国家海洋和大气管理局(National Oceanic and Atmospheric Admin⁃istration,NOAA)逐月海表温度资料,分析2022年7月内蒙古中西部地区涝-旱转折事件的成因。结果表明:(1)2022年7月内蒙古中西部地区降水量严重偏少,为该地区1991年以来同期降水最少、气象干旱最为严重。(2)7月1—11日降水相对偏多,冷空气路径偏北且强度较弱,西太平洋副热带高压强度偏弱,位置偏北、偏西,冷暖空气在内蒙古中西部地区交绥,加之这一时段高空西风急流位置偏北,内蒙古中西部位于急流轴以南,有利于高层辐散和上升运动发展。7月12—31日降水明显偏少,环流经向度加大,冷空气活动路径偏南且强度增强,西太平洋副热带高压强度偏强且位置明显偏南,不利于水汽输送,加之高空西风急流位置偏南,内蒙古中西部位于急流轴以北,不利于高层辐散和上升运动发展;7月中旬后期至下旬高空西风急流南北向扰动偏强有利于激发东亚—西北太平洋经向遥相关波列,使得西太平洋副热带高压位置偏南从而导致降水偏少。(3)日本海至北太平洋西北部地区的海温异常是影响内蒙古中西部地区降水多寡的重要外强迫信号之一。2022年7月该海区海温异常偏高,其上空激发的气旋式环流减弱了南方暖湿水汽的经向输送,是导致内蒙古中西部降水由涝转旱的原因之一。